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Surface critical behavior in systems with nonequilibrium phase transitions
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We study the surface critical behavior of branching-annihilating random walks with an even number of
offspring ~BARW! and directed percolation~DP! using a variety of theoretical techniques. Above the upper
critical dimensionsdc , with dc54 ~DP! anddc52 ~BARW!, we use mean field-theory to analyze the surface
phase diagrams using the standard classification into ordinary, special, surface, and extraordinary transitions.
For the case of BARW, at or below the upper critical dimensiond<dc , we use field theoretic methods to study
the effects of fluctuations. As in the bulk, the field-theory suffers from technical difficulties associated with the
presence of a second critical dimension. However, we are still able to analyze the phase diagrams for BARW
in d51 and 2, which turn out to be very different from their mean field analog. Furthermore, for the case of
BARW only ~and not for DP!, we find two independent surfaceb1 exponents ind51, arising from two
distinct definitions of the order parameter. Using an exact duality transformation on a lattice BARW model in
d51, we uncover a relationship between these two surfaceb1 exponents at the ordinary and special transi-
tions. Many of our predictions are supported using Monte Carlo simulations of two different models belonging
to the BARW universality class.

PACS number~s!: 05.40.2a, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

The study of surface critical behavior in equilibrium st
tistical mechanics has established the importance of bou
aries in critical systems and their impact on scaling and u
versality @1#. Quantities measured close to the surface
scale differently than in the bulk, and can possess dist
critical surface exponents. Depending on the boundary c
ditions, various surface universality classes are possible e
with different values for the surface exponents. In this pa
we will be interested in the surface critical behavior of c
tain dynamicsystems, which possess a nonequilibrium ph
transition from an active into an absorbing state from wh
the system cannot escape.

The most prominent example of a system with an abso
ing state isdirected percolation~DP!. It describes the di-
rected growth of a cluster governed by a growth probabi
p of its fundamental constituents. For probabilities below
critical value,p,pc , the cluster will die after a finite time
which means that the system becomes trapped in
vacuum—the unique empty state. On the other hand, for h
enough growth probabilitiesp.pc , there is a finite probabil-
ity that the cluster will always remain active. Exactly atp
5pc , there is a critical phase transition from the active in
the absorbing state@2#. A whole range of other systems po
sessing a phase transition from a nontrivial active phase
a unique absorbing state fall into this universality cla
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Some examples include epidemics, chemical reactions,
talysis, and the contact process~see Ref.@3# and references
therein!.

During the last few years, however, studies have a
been carried out for systems with absorbing states which
not belong to the DP class. For instance, the model
branching-annihilating random walkswith an even number
of offspring~BARW! exhibits quite different behavior@4–6#,
and defines a separate universality class. Other models in
class~at least ind51) include certain probabilistic cellula
automata@7#, monomer-dimer models@8–10#, nonequilib-
rium kinetic Ising models@11#, and generalized DP with two
absorbing states~DP2! @12#. These models escape from th
DP universality class by possessing an extra conserva
law or symmetry: for the BARW model, a ‘‘parity’’ conser
vation of the total number of particles modulo 2; for th
other models, an underlying symmetry between their abso
ing states.

In the present paper we study the impact of surfaces
the critical behavior of the DP and BARW models. Previo
work has concentrated on surface effects in DP using fi
theoretic methods@13,14#, Monte Carlo simulations ind
51 and 2@14–16#, the density matrix renormalization grou
in d51 @17#, and series expansions ind51 @18,19#. Rela-
tions between surface DP and local persistence probabil
were explored in Ref.@20#. Work has also been performed o
active, but slanted, walls in DP, which give rise to a ‘‘cu
tain’’ of activity whose width is given by an angle-depende
correction to bulk DP@21#. Critical surface effects for a
model in the BARW universality class were first studied
Ref. @22#. In this paper we will build on this earlier work by
presenting a unified picture of surface critical behavior
both BARW and DP. After summarizing the main details
DP and BARW in the bulk, we present a comprehens
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168 PRE 61HOWARD, FRÖJDH, AND BÆKGAARD LAURITSEN
analysis of the surface critical behavior of both models us
mean field theory. This involves the usual classification i
ordinary, special, surface, and extraordinary transitio
However, below their respective upper critical dimensio
fluctuation effects become important in both models, and
leads to the breakdown of mean field theory. In order
understand this fluctuation regime we employ a variety
theoretical techniques. First, we construct a phenomenol
cal scaling theory which is able to describe the various s
face universality classes. This scaling theory for BARW c
then, to some extent, be justified using field-theoretic te
niques~a field theory for surface DP was already presen
in Ref. @13#!. However, the BARW field theory suffers from
technical problems associated with the presence of a se
critical dimension, which means that the interestingd51
regime cannot be accessed satisfactorily. Nevertheless s
results can be derived field theoretically which we put
gether to draw up a~111!-dimensional surface phase di
gram. This phase diagram displays many differences from
mean field analog. In addition, using exact techniques
volving a mapping to a quantum spin Hamiltonian, we ha
been able to establish an exact duality transformation fo
lattice BARW model ind51. We find that this links to-
gether two of the boundary phase transitions ind51 in a
nontrivial way ~as suggested in Ref.@22#!. We have also
performed extensive Monte Carlo simulations for BAR
and DP2 which support many of our theoretical conclusio

The paper is organized as follows: in Sec. II we brie
introduce the bulk DP and BARW models. Then in Sec.
we consider the surface behavior of DP, where we presen
extensive mean field analysis. We also summarize detai
the fluctuation regime ford,dc54. In Secs. IV A and IV B,
we give the phase diagram for surface BARW in mean fi
theory and ind51, respectively. These results can be co
tained within a scaling theory presented in Sec. IV C. W
then discuss in Sec. IV D how this analysis can be partia
justified using field theoretic methods. In Sec. IV E, we gi
some exact results ford51. Our theoretical analysis is the
backed up using computer simulations of the lattice mod
introduced in Sec. V. Details of these simulations are p
sented in Sec. VI. Finally, in Sec. VII we round off wit
some conclusions.

II. BULK DP AND BARW

We begin by briefly reviewing the definitions of the D
and BARW models. The update rules for bond DP ind11
dimensions on a tilted square lattice are easily defined:
each site at timet, form bonds with probabilityp to the
neighboring sites at timet11 @2#. An example of a cluster
grown from a single seed according to these rules is sh
in Fig. 1~a!.

For growth probabilities below a certain threshold suc
process will eventually die out, whereas for higher valu
there is a finite probability of survival, which means that t
system is in the active state@23#. As is well known@24–26#,
various reaction-diffusion models also fall into the DP u
versality class. The simplest of these is defined by the
g
o
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lowing reaction scheme for a single species of diffusing p
ticles:

A→A1A with rates,

A1A→A with ratel, ~1!

A→B with ratem,

where, in the corresponding lattice model, we allow for m
tiple ~bosonic! occupancy of any given site.

The second system which we will analyze in detail is t
BARW model @4–6#. This is defined again by a~bosonic!
particle model, with the following reaction processes:

A→~m11!A with ratesm ,
~2!

A1A→B with ratel.

For m odd, the above model is known to belong to the D
universality class; however, form even, we have a new uni
versality class. Unless otherwise specified when we refe
the BARW model we will be referring to the evenm case.

The growth of both BARW and DP clusters in the bu
close to criticality can be summarized by a set of indep
dent exponents. A natural choice is to considern' and n i ,
which describe the divergence of the correlation lengths
space,j';uDu2n', and time,j i;uDu2n i. Here the paramete
D describes the deviation from the critical point~in mean
field theoryD5m2s for DP, butD52msm for BARW!.
We also need the order parameter exponentb, which can be
defined in twoa priori different ways: it is either governed
by the percolation probability~the probability that a cluste
grown from a finite seed never dies!,

P~ t→`,D!;uDubseed, D,0, ~3!

FIG. 1. DP clusters grown from a single seed~a! in the bulk and
~b! next to a wall.
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PRE 61 169SURFACE CRITICAL BEHAVIOR IN SYSTEMS WITH . . .
or by the coarse-grained density of active sites in the ste
state,

n~D!;uDubdens, D,0. ~4!

When D,0 the system is said to be in anactive state,
whereas forD50 the system iscritical ~with an algebra-
ically decaying density!, and for D.0 ~if applicable! the
system isinactive ~with an exponentially decaying density!
@27#. For the case of DP, it is known thatb is unique:
bseed5bdens in any dimension, both above and below t
upper critical dimensiondc54. This follows from field-
theoretic considerations@23,24#, and has been verified b
extensive numerical work. The relation also holds
BARW in 111 dimensions, a result first suggested by n
merics and now backed up by an exact duality mapping@28#.
However, this exponent equality is certainly not always tr
if we consider the BARW mean field regime valid for spat
dimensionsd.dc52, then the system is in a critical inactiv
state only for a zero branching rate, where the density dec
away as a power law. However, any nonzero branching
results in an active state, with a nonzero steady state de
@see Fig. 2~a!# @6#. This density@Eq. ~4!# approaches zero
continuously~as the branching rate is reduced toward ze!
with the mean field exponentbdens51. Nevertheless, ford
.2, the survival probability@Eq. ~3!# of a particle cluster
will be finite for any value of the branching rate, implyin
that bseed50 in mean field theory. This result follows from
the non-recurrence of random walks ind.2.

Field theoretically, DP is believed to be satisfactor
understood—the appropriate field theory~sometimes called
Reggeon field theory! @24,26# is well under control and the
exponents have been computed to two loop order in ae
542d expansion@25#. However, for the case of BARW, a
description of the~111!-dimensional case poses conside
able difficulties for the field theory@6#. These stem from the
presence of two critical dimensions:dc52 ~above which
mean field theory applies! and dc8'4/3. For d.dc8 the be-
havior of Fig. 2~a! holds, i.e., an active state results forany
nonzero value of the branchingsm , whereas ford,dc8 the
system is only active forsm.sm,critical , as shown in Fig.
2~b! @6#. This means that the physical spatial dimensiond
51 cannot be accessed using epsilon expansions down
the upper critical dimensiondc52. Furthermore, for the
sm,sm,critical region, the system isnot inactive~in the sense
of an exponentially decaying density!. Instead this entire
phase is controlled by the annihilation fixed point of theA
1A→B process, where the density decays away as a po
law. Hence this phase should rather be considered as
being critical.

FIG. 2. Schematic bulk behavior for BARW of the densityn as
a function of the branching ratesm for ~a! d>2 and~b! d51.
dy
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Despite the problems associated with BARW ford,dc8 ,
we can still put forward a general scaling theory for DP a
BARW, valid both above and below their critical dimen
sions. However, we must retain a possible distinction
tweenbseedandbdens. For example, the average lifetime^t&
of finite clusters can be derived from the scaling form for t
survival probability

P~ t,D!5uDubseedw~ t/j i!. ~5!

We then find̂ t&;uDu2t, wheret5n i2bseed. The appropri-
ate scaling form for the densityn(x,t), given that the cluster
was started atx50 and t50, is

n~x,t,D!5uDubseed1bdensf ~x/j' ,t/j i!. ~6!

Notice that rotational symmetry about the seeding poinx
50 implies that the spatial coordinates enter the scal
function only asx5uxu, the distance from the seeding poin
Using expression~6! we see that the average mass of fin
clusters,̂ s&;uDu2g, is related to the other exponents via th
following hyperscaling relation

n i1dn'5bseed1bdens1g. ~7!

Note that Eq.~7! is consistent with the distinct upper critica
dimensions for BARW and DP. Using the above mean fi
values for BARW andn'51/2, n i51, andg51, we verify
dc52. In contrast, for DP one has the mean field expone
bdens5bseed51 anddc54.

III. SURFACE DP

We now briefly review the surface critical behavior
DP, and indicate how the above relations and exponents
modified in a semi-infinite geometry, where we place a w
at x'50 @x5(xi ,x'), with the ' and i directions being
relative to the wall#. An example of such a cluster grow
close to a wall is shown in Fig. 1~b!.

A schematic phase diagram for surface DP is shown
Fig. 3 ~see Ref.@13#!, whereDs is the deviation of the sur-
face from criticality. In Fig. 3, the labeling conforms to th
standard nomenclature of surface critical phenomena
stands for the ordinary transition~bulk critical, surface inac-
tive!; Sp is for the special transition~bulk and surface both
critical!; S is for the surface transition~surface critical, bulk
inactive!; and finally E stands for the extraordinary transitio
~surface active, bulk critical!.

FIG. 3. Schematic mean field phase diagram for surface DP.
text for an explanation of the labeling.
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The bulk exponents are, of course, unchanged by the p
ence of a surface and, furthermore, one can show that
correlation length exponents on the surface are also the s
as in the bulk. Hence, except at the special transition,
finds justone extra exponent: the surface density expon
b1,dens. This is defined from the steady-state density at
wall. For example, at the ordinary transition, we have

n~x'50,D!;uDub1,dens
O

, D,0. ~8!

On the other hand, at the multicritical special transition, o
finds two independent surface exponents—a new surf
density exponent,b1,dens

Sp , and a crossover exponentf1. In
principle one could also allow for a second type of surfa
b1 exponent, one defined from a survival probability f
clusters started on the wall. For example, at the ordin
transition, we would have

P1~ t→`,D!;uDub1,seed
O

, D,0. ~9!

However, the surface exponents here show a similar pat
to their bulk counterparts and fulfillb1,seed

O 5b1,dens
O 5b1

O, as
can be shown by a field-theoretic derivation of an appro
ate correlation function@14#. This kind of equality should
also hold for theb1 exponents at the special and surfa
transitions.

Numerically, the exponents at the ordinary transition ha
been measured very accurately using series expansions~for
d51) @18,19#, and Monte Carlo simulations~for d51 and
2! @14–16#. However, there has been no numerical work
date on any of the other possible transitions on the bound

A. Mean field theory

Although a considerable amount of work has already b
performed on surface DP@13–15,18#, a comprehensive mea
field analysis has been lacking. The purpose of this sectio
to provide such an analysis, and in the process we will de
several interesting results. The equation describing m
field DP with a surface is

] tn5D¹2n2Dn2ln2, ~10!

with the boundary condition

D]x'
nux'505Dsnux'50 . ~11!

Here the variableD5m2s is the difference between th
rates for theA→B and A→A1A processes. Similarly we
have the surface variableDs , and the bulk quadratic term i
due to the reactionA1A→A. Note that a surfaceA1A
→A reaction does not have to be included, as it is an ir
evant process in the renormalization group~RG! sense@13#.
From the above equation~10!, the bulk mean field exponent
can easily be computed:n i51, n'51/2, andb51. Further-
more, with the inclusion of a boundary, we see that the c
relation length exponents are unchanged at the wall but
surfaceb1 exponents are altered. If we are interested in
mean field steady state, then we can replace Eq.~10! with

Dn92Dn2ln250, ~12!
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where n9[d2n/dx'
2 . The appropriate boundary conditio

~11! is given by

Dns85Dsns , ~13!

where ns5nux'50, and ns85dn/dx'ux'50. Multiplying Eq.

~12! by n8 and integrating, we have

1

2
Dn822

1

2
Dn22

1

3
ln31C50, ~14!

whereC is a constant of integration. Using the bulk resu
n850, and n5(2D)/l for D,0, or n50 for D.0, we
have

Dsns

D
52F l

DG1/2S ns2
uDu
l D S 2

3
ns1

uDu
3l D 1/2

@D,0#,

~15!

Dsns

D
52F l

DG1/2

nsS 2

3
ns1

D

l D 1/2

@D.0#, ~16!

where we have also used the boundary condition~13!.
Ordinary transition: Consider the case whereDs.0 and

D→02. In that case we expectn5uDu/l@ns , and thus Eq.
~15! yields ns}uDu3/2, giving b1

O53/2.
This exponent can also be derived on physical ground

follows ~see also Ref.@29#!. At the ordinary transition the
density falls to zero not exactly at the wall, but would rath
reach zero a distancel on the far side of the surface~if the
density were appropriately continued!. Hence the density on
the boundary can be computed fromlns8 . Sincel is a micro-
scopic distance which remains finite even at the bulk criti
point, one can compute the scaling of the surface den
simply from ns85dn/dx'ux'50. Thus, from dimensiona

analysis, we see thatb1
O53/2.

Special transition: In this case ifDs50 we see from Eq.
~15! thatns scales in the same way as the bulk densityn, i.e.,
b1

Sp51 @30#. Furthermore, a simple rewriting of Eqs.~15!
and ~16! reveals the scalingDs;D1/2, fixing the crossover
exponent asf151/2.

Surface transition: For this caseDs,0 and D.0, and,
hence, from Eq.~16! we find ns5(3/2Dl)@Ds

22DD# for 0
,DD,Ds

2 , andns50 for DD.Ds
2 . Hence the line in pa-

rameter space where the mean field surface transition oc
is given byDs

25DDcritical , and we then haveb1
S51. Note

that this is the same value as in the bulk, a standard featu
the surface transition which is believed always to be in
same universality class as a (d21)-dimensional bulk transi-
tion. As we are dealing with mean field theory this will o
course yield the same exponent for the surface transitio
in the bulk.

Extraordinary transition: In this case the surface densi
is of course nonzero both above and below the transit
However, if we expandns in powers ofD for Ds,0 and
D→01 or 02, we see that these two expansions differ
third order @31#, i.e., ns has a discontinuity in its third de
rivative at D50. Hence we identifyb1

E53. To the best of
our knowledge, this transition does not seem to have b
previously discussed in the literature.
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However, as is the case in equilibrium critical pheno
ena, we expect the extraordinary transition to be more g
eral than the scenario described above. In fact, the extr
dinary transition is associated with the onset of order in
bulk regardless of how the surface is ordered. In particu
for arbitrary values ofDs , the surface can be ordered b
applying the equivalent of a surface external magnetic fie
For the BARW process this is simply the surface sponta
ous particle creation reactionB→A. Extending our previous
mean field analysis to cover this case~sometimes called the
normal transition!, we recover precisely the same results
obtained above, withb1

E53. Hence the important point fo
the extraordinary transition~as described in Ref.@32#! is that
the surface must be active atD50—the means by which this
is achieved is unimportant.

Next, we consider the case where the bulk isexactlycriti-
cal, i.e., D is exactly zero, and therefore the correlati
lengthsj i andj' diverge. In that the case the density in t
bulk decays away asdn/dt52ln2⇒n;t21. Hence, for the
surface, we need now to include time dependence in
analysis, and therefore Eq.~12! is replaced by

ṅ5Dn92ln2, ~17!

whereṅ5] tn and the boundary condition remains as giv
in Eq. ~13!. Multiplying both sides of Eq.~17! by n8 and
integrating, we obtain

E
0

`

dx'ṅn852
1

2D
Ds

2ns
22

1

3
l~n32ns

3!, ~18!

where we have used the conditionsn850 ~in the bulk! and
the boundary condition~13!.

Exactly at the extraordinary transition: Here the density
close to the wall will be in an active steady state, and he
nearbyṅ will be close to zero. However, well away from th
surface we expect to recover bulk behavior wheren8'0 and
n;t21. Hence, to leading order the integral on the left-ha
side of Eq.~18! will be zero. Therefore, from Eq.~18!, we
find a steady state on the surface withns'3Ds

2/2Dl. Fur-
thermore, we expect that this active region will extend in
the bulk, with the density decaying away asymptotically
x'

22 . However, assuming the system is started with ini
conditions att50 of constant density everywhere, then af
a time t this region will only extend into the bulk as far a
x';t1/2, where we will find a crossover to the bulkt21

density decay.
Exactly at the special transition: Here, whereDs50, we

see that the mean field equation~18! is solved byns5n
;t21. Hence the surface density scales in the same way a
the bulk ~see also Ref.@33#!.

Exactly at the ordinary transition: Once again, if we star
with initial conditions of uniform density att50, then at
later times a depletion zone will be formed close to the s
face. This zone will again extend a distance of ordert1/2 into
the bulk. The surface scaling can now most simply be
rived via dimensional analysis of the surface opera
]x'

nux'50, yielding ns;t23/2.
-
n-
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B. Beyond mean field theory

We expect that the phase diagram shown in Fig. 3
generally valid for surface DP close to the upper critic
dimensiondc54. However, in 111 dimensions, where the
surface is just a zero-dimensional point, the phase diag
may look rather different. For example, for an inactive bu
net particle production is only possible at one point. Furth
more, since particles will be constantly lost into the bu
where they will decay away exponentially quickly, it wi
probably not be possible to form an active surface state~at
least for finite particle production rates!. If this is the case
only the ordinary transition will be accessible ind51. Fur-
thermore, for arbitrary dimension, we note that a syst
which is simply cut off atx'50 can also only undergo a
ordinary transition. This is a result of there being the sa
microscopic reaction rates on the surface as in the bulk
low dimensions it becomes more and more difficult to indu
an active state~since the fluctuations become larger!, and,
hence, if the bulk is adjusted to be at criticality, it follow
that the surface~considered independently! would be inac-
tive. Therefore, for the case of DP, one will only be able
find the ordinary transition~as was certainly the case in th
simulations of Ref.@14#!.

The scaling forms for the survival probability~at the or-
dinary transition! and correlation functions~at the special
and ordinary transitions! were discussed in Refs.@13,14#. For
example, at the ordinary transition, the survival probabil
for a cluster started on the wall att50 has the scaling form
@14#

P1~ t,D!5uDub1
O
w1~ t/j i!. ~19!

Hence the average lifetime of finite clusters at the ordin

transition,^t&;uDu2t1
O
, satisfiest1

O5n i2b1
O, a straightfor-

ward generalization of the bulk result. Previous series exp
sions in 111 dimensions have indicated a value fort1

O equal
to unity @18#, although very recent~and even more accurate!
series results@19# have cast some doubt on this conclusio
No theoretical explanation for whyt1

O should be equal to
unity has emerged.

The bulk densityn(x,t) for a cluster initiated on the wal
at t50 is given by@13,14#

n1
O~x,t,D!5uDub1

O
1b f 1@x/j' ,t/j i#,

~20!

n1
Sp~x,t,D,Ds!5uDub1

Sp
1b f̃ 1@x/j' , t/j i ,Ds /uDuf1#,

where the surface exponents have been calculated toO(e
542d) in Ref. @13#, giving b1

O53/227e/48, b1
Sp512e/4,

andf151/22e/16. The first of the expressions in Eq.~20!
refers to the ordinary transition and the second to the spe
transition. Crudely speaking, theD prefactor in Eq.~20!
comes from Eq.~19! for the probability that an infinite clus
ter can be grown from the seed, and from Eq.~4! for the
conditional probability that the point (x,t) belongs to this
cluster. At the ordinary transition, for example, it is the
straightforward to derive hyperscaling relations for the m
of finite clusters which are seeded on the wall. This m

scales aŝs1&;uDu2g1
O
, and, as shown in Ref.@14#, one finds
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n i1dn'5b1
O1b1g1

O. ~21!

For a more detailed discussion of the DP ordinary transiti
including other types of hyperscaling, we refer to Ref.@14#.

IV. SURFACE BARW

We now turn our attention to the main object of this p
per, an understanding of the surface critical properties
BARW. We will begin by discussing the BARW surfac
phase diagram in various dimensions. The basic idea is
on the surface we may include not only the usual branch
and annihilation reactions, but potentially also a parity sy
metry breakingA→B reaction. Depending on whether o
not theA→B reaction is actually present, we may then e
pect different surface universality classes according
whether the symmetry of the bulk is broken or respected
the surface. A similar situation in an equilibrium system w
recently analyzed in Ref.@34#. We will find that the compe-
tition between the parity breakingA→B reaction and the
BARW processes gives rise to some interesting phase
grams.

A. Mean field phase diagram

The surface phase diagram for the mean field theory
BARW ~valid for d.dc52) is shown in Fig. 4. Heresm
and sms

are the rates for the branching processesA→(m

11)A in the bulk and at the surface, respectively, andms is
the rate for the surface spontaneous annihilation reactioA
→B. Otherwise, the labeling is the same as that for the
phase diagram~see Fig. 3!.

The first feature to note is that the bulk is either act
(sm.0) or critical (sm50), but never inactive. Hence, un
like DP, there is no possibility of finding a surface transitio
where the surface is critical with the bulk inactive. For t
case wheresm5ms50, we expect that for any finite value o
the surface branching, the surface will become active. T
corresponds to the extraordinary transition with an act
surface and critical bulk. On the other hand, forsm5sms

50 and ms.0, the density at an~isolated! surface would
decay away exponentially quickly due to theA→B reaction.
Hence the bulk is critical, with the surface inactive; i.e., t
ordinary transition. Consequently withsm50, but bothms
andsms

nonzero, there should be a line of special transitio

FIG. 4. Schematic mean field surface phase diagram for BAR
See the text for an explanation of the labeling.
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dividing the extraordinary and ordinary regions. This e
plains the general features of the phase diagram in Fig.

At a more quantitative level, the mean field equation
BARW is very similar to that for DP,

] tn5D¹2n2Dn2ln2, ~22!

with the boundary condition

D]x'
nux'505Dsnux'50 . ~23!

However, the values of theD,Ds parameters are now differ
ent: D52msm and Ds52msms

1ms . The fact thatD is
always nonpositive excludes any possibility of a surfa
transition. Otherwise we expect the same mean field ex
nents as in DP for the special and ordinary transitions@30#
~except for theb1,seedexponents; see below!. However, the
nonpositivity ofD also leads to an ambiguity associated w
the definition ofb1,dens

E : we would have to know the behavio
of the surface density on both sides of the extraordinary tr
sition if we wanted to isolate the discontinuity and extra
the exponent.

We can also consider the mean field behavior of
b1,seed exponents, which is very different from the corr
sponding behavior in DP. Consider placing two partic
next to the surface att50. From the recurrence properties
random walks we see that, regardless of the reaction rate
the surface or in the bulk, there is a finite chance that the
particles will never meet again. Hence the survival proba
ity is nonzero, and thusb1,seed50 in mean field theory for
the ordinary and special transitions.

B. Phase diagram in 111 dimensions

Next we turn our attention to the phase diagram for 111
dimensions shown in Fig. 5. Although we will make a fe
remarks below, we will postpone a proper justification un
we have discussed the appropriate field theory in Sec. IV
The phase diagram looks quite different from its mean fi
analog due in part to the shift of the bulk critical point aw
from zero branching rate, but also due to the absence of
extraordinary transition~for finite reaction rates!. Physically,
this is due to the fact that excess particle production~with a
finite reaction rate! at a zero-dimensional surface is simp
not efficient enough to generate an active state, due to le
age into the critical bulk~which for sm,sm,critical is con-
trolled by the fixed point of theA1A→B reaction@6#!.

However, for infinite branching rates and/or if the rea
tion B→A is added at the surface, then an extraordin
transition should become accessible, although we will
consider this case in any further detail. The other main f

.

FIG. 5. Schematic surface phase diagrams for BARW ind51
for ~a! sm,sm,critical , and ~b! sm5sm,critical . See the text for an
explanation of the labeling.
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tures of the phase diagram in 111 dimensions are outlined
below.

Sp*: For sm,sm,critical and ms50, the system is con
trolled everywhere by the annihilation fixed point. In th
case one has the special transition, but now in a slig
different sense to what we have seen before. In this regio
is not possible to obtain an active state either on the surf
or in the bulk, by small changes in the bulk and/or surfa
branching rates. Hence this ‘‘transition’’ is actually entire
controlled by theA1A→B process with the branchin
playing essentially no role. Thus we have marked this ‘‘tra
sition’’ as Sp* in Fig. 5~a!. This simpler and analytically
tractable case was already extensively analyzed in Ref.@33#.
We will postpone further theoretical discussion until Se
IV D 4.

Sp: Next we consider the special transition atsm
5sm,critical ,ms50. This transition borders the bulk activ
phase, and hence will belong to a quite different universa
class to that described immediately above, and will inst
be similar to the special transitions discussed in earlier s
tions @although fluctuations will now be very important fo
this ~111!-dimensional case#.

O*: For ms.0 and sm,sm,critical , the presence of the
A→B reaction on the surface gives rise to an ordina
‘‘transition.’’ However, as explained above, the branchi
process again plays essentially no role here. Further de
of this O* ‘‘transition’’ are provided in Sec. IV D 4.

O: Finally, at sm5sm,critical ,ms.0, we expect an ordi-
nary transition similar in character to the ordinary transitio
discussed in previous sections@although in this ~111!-
dimensional case the fluctuations are again very importa#.

C. Scaling theory

In this section we construct a scaling theory for the s
vival probabilities and correlation functions at the Sp and
transitions. This scaling theory is certainly valid for the me
field regime but there are, however, subtleties involved in
application to the fluctuation dominated regime ford<2.
The extent of its validity in that region will be discussed
detail in Sec. IV D. When writing down this scaling theo
we must also bear in mind the important distinction betwe
the b1,densandb1,seedexponents. We begin by giving a sca
ing form for the survival probabilityP1(t,D), whereD is the
deviation from bulk BARW criticality. For example, at th
ordinary transition, for a seed placed on the wall atx50 and
t50, we have

P1~ t,D!5uDub1,seed
O

F1~ t/j i!. ~24!

It is then straightforward to compute the average lifetime
finite clusters,̂ t&;uDu2t1, wheret1

O5n i2b1,seed
O , just as in

the case of DP.
Next, we consider the coarse-grained particle densityn1

at the point (x,t) for a cluster grown from a seed locate
next to the wall atx50 and t50. At the ordinary transition
we have

n1~x,t,D!5uDub1,seed
O

1bdensg1~x/j' , t/j i!. ~25!

As was the case for DP, theD prefactor in Eq.~25! comes
from Eq. ~24! for the probability that an infinite cluster ca
ly
it
e

e

-

.

y
d
c-

y

ils

s

-

n
s

n

f

be grown from the seed, and from Eq.~4! for the ~condi-
tional! probability that the point (x,t) belongs to this cluster
The shape of the cluster is governed by the scaling func
g1 and we assume that the density is measured at a fi
angle away from the wall. If the density is measured alo
the wall, we have, instead,

n11~x,t,D!5uDub1,seed
O

1b1,dens
O

g11~x/j' ,t/j i!, ~26!

as we pick up a factoruDub1,dens
O

rather thanuDubdens from the
probability that (x,t) at the wall belongs to the cluster.

The above correlation functions need only be modifi
slightly to be valid at the special transition. IfDs ~the devia-
tion of the surface from criticality! is a relevant parameter
then we must take care to include the extra varia
Ds /uDuf1 in the scaling function. The scaling form replacin
Eq. ~25! then becomes

n1~x,t,D!5uDub1,seed
Sp

1bdensg̃1@x/j' ,t/j i ,Ds /uDuf1#,
~27!

wheref1 is a crossover exponent associated with the mu
critical special transition. Similarly, Eq.~26! is replaced by

n11~x,t,D!5uDub1,seed
Sp

1b1,dens
Sp

g̃11@x/j' ,t/j i ,Ds /uDuf1#.
~28!

Note, however, that there are subtleties concerning the
cial transition in 111 dimensions which will be discussed i
Sec. IV D 1.

At the ordinary transition, for example, we can use t
above scaling forms to derive some further exponent equ
ties. The average size of finite clusters

^s1&;uDu2g1
O
, ~29!

follows from integrating the cluster density~25! over space
and time, where the surface~susceptibility! exponentg1

O is
related to the previously defined exponents via

n i1dn'5b1,seed
O 1bdens1g1

O. ~30!

Analogously, by integrating the cluster wall density~26!
over the (d21)-dimensional wall and time, we obtain th
average size of finite clusters on the wall,

^s1,1&;uDu2g1,1
O

, ~31!

where

n i1~d21!n'5b1,seed
O 1b1,dens

O 1g1,1
O . ~32!

Note that if theg susceptibility exponents obtained from
Eqs.~30! and~32! are negative, then they should be replac
by zero in Eqs.~29! and ~31!.

D. Field theory

In order to properly understand the effects of fluctuatio
and to justify some of the scaling forms proposed in the l
section, we now turn to the development of a field theory
surface BARW. We will begin by reviewing the field theor
for BARW in the bulk, before moving on to derive the ap
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propriate surface actions. The bulk BARW action, written
terms of the response fieldĉ(x,t) and the ‘‘density’’ field
c(x,t), is given by@6#

Sbulk
bare@c,ĉ;t#5E ddxF E

0

t

dt@ĉ~x,t !@] t2D“

2#c~x,t !

2l@12ĉ~x,t !2#c~x,t !2

1sm@12ĉ~x,t !m#ĉ~x,t !c~x,t !#

2c~x,t!2n0ĉ~x,0!G . ~33!

Here the terms on the first line of Eq.~33! represent diffusion
of the particles~with continuum diffusion constantD). The
second line describes the annihilation reaction~with con-
tinuum ratel), while the terms on the third line represent th
branching process~with continuum ratesm). The final two
terms represent, respectively, a contribution due to the p
jection state~see Ref.@35#!, and the initial condition~an
uncorrelated Poisson distribution with meann0). In the fol-
lowing we will restrict ourselves to the case ofeven m, since
it is known that the oddm case belongs to the DP universa
ity class@6#.

The action given in Eq.~33! is a bare action. In order to
properly include fluctuation effects, one must be careful
include processes generated by a combination of branc
and annihilation. In other words, in addition to the proce
A→(m11)A, the reactionsA→(m21)A,...,A→3A need
to be included. These considerations lead to the full actio

Sbulk@c,ĉ;t#5E ddxF E
0

t

dtS ĉ~x,t !@] t2D“

2#c~x,t !

1(
l 51

m/2

s2l@12ĉ~x,t !2l #ĉ~x,t !c~x,t !

2l@12ĉ~x,t !2#c~x,t !2D
2c~x,t!2n0ĉ~x,0!G . ~34!

Notice also that~for even m! the action~34! is invariant
under the ‘‘parity’’ transformation

ĉ~x,t !→2ĉ~x,t !, c~x,t !→2c~x,t !. ~35!

This symmetry corresponds physically to particle conser
tion modulo 2. The presence of this extra symmetry n
takes the system away from the DP universality class,
into a new class: that of branching-annihilating rando
walks with an even number of offspring.

Close to the upper critical dimensiondc52, the renormal-
ization of the above action is quite straightforward~here we
quote the results from Ref.@6#!. Only the branching and an
nihilation rates need be renormalized, and in particular th
are no diffusion constant or field renormalizations. Furth
more, if we are close to the annihilation fixed point, then t
RG eigenvalue of the branching parameter becomesysm
o-

o
ng
s

-

d

re
-
e

522m(m11)e/21O(e2), where e522d. Hence we see
that the lowest branching process is actually the most re
evant. Therefore, close to two dimensions, where the bran
ing remains relevant, we expect to find anactivestate even
for very small values of the branching~in agreement with the
mean field phase diagram!. Furthermore, the fact that there
only one eigenvalue to compute perturbatively~as the renor-
malization of the annihilation rate can be performed to
orders@36#!, means that there is only one independent ex
nent. Hence, close to two dimensions, the order param
exponent can be shown to bebdens5dn' .

However, inspection of the above RG eigenvalueysm

shows that it eventually becomes negative~if the one loop
result is to be believed!. In that case we expect a majo
change in the behavior of the system, since the branch
process will no longer be relevant at the annihilation fix
point. The critical transition point is then shifted with th
active state only being present for values of the branch
greater than some positive critical value@as indicated in Fig.
2~b!#. Consequently, we see that there is a second crit
dimensiondc8'4/3 whose presence immediately rules o
any possibility of accessing the nontrivial behavior expec
in d51 via perturbative epsilon expansions down fromd
52. Instead cruder techniques~such as the loop expansion i
fixed dimension! must be employed@6#. We now turn to the
derivation of the surface actions appropriate for the ca
ms50 andmsÞ0.

1. µs50 field theory

Starting from an appropriate master equation for the s
tem on a lattice, the form of the surface action can be deri
using standard techniques@35,36#. After mapping to the con-
tinuum theory, we find the bare actionSbare5Sbulk

bare1S1
bare,

with Sbulk given by Eq.~33!, and

S1
bare5E dd21xi E

0

t

dt~sms
@12ĉs

m#ĉscs!, ~36!

whereĉs5ĉ(xi,x'50,t) and cs5c(xi,x'50,t). Note that
the terms representing the annihilation reactionA1A→B
are irrelevant on the surface close to the upper critical d
mension.. The classical field equations for the above ac
can be derived by taking the variational derivatives of t
actionSbare5Sbulk

bare1S1
bare with respect to the fieldsĉ andc.

These equations are solved byĉ5ĉs51, with c satisfying

] tc5D¹2c2Dc22lc2, ~37!

where D52msm , and with the boundary condition
D]x'

cux'505Dscs , whereDs52msms
. These mean field

results are in agreement with our analysis in Sec. IV A. F
thermore, we note that a boundary term of the fo
ĉs]x'

cux'50, although marginal from power counting argu
ments, is actually always redundant~even in the regime
where mean field theory no longer applies!. This is also the
case for the surface action in DP~see Ref.@13#!.

However, if we are properly to include fluctuation effec
we must again take care to include surface terms gener
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by a combination of branching and annihilation~as in the
bulk!. This leads to the full surface action

S15E dd21xi E
0

t

dt F(
l 51

m/2

s2l s
@12ĉs

2l #ĉscsG . ~38!

Note also that the parity symmetry~35! is preserved for the
ms50 model at the wall, as well as in the bulk.

Power counting on the above action reveals that the
face branching ratess2l s

all have naive dimension@s2l s
#

;k1, where k denotes an inverse length scale. Howev
below two dimensions this scaling dimension will be ren
malized downwards~this can be seen physically as a result
processes likeA→3A→A rendering the branching proces
less efficient!. As a result of this renormalization, we expe
the lowest generated process@i.e., with l 51 in Eq.~38!# will
become themostrelevant~as it was in the bulk!. Neverthe-
less, despite this downward renormalization, close enoug
two dimensions, the scaling dimension of the most relev
coupling s2s

will remain positive, and thus under the R

will flow to ` for all nonzero starting values. This state
affairs corresponds to the extraordinary transition where
surface isactivewhile the bulk is critical. On the other hand
at bulk criticality and withs2s

50, we have a multicritical
special transition point. In this case, after writing down a
solving the appropriate RG equations~exactly along the lines
of Refs. @6,13#!, one can derive the scaling results for t
density quoted in Sec. IV C, where we can see that the in
pendent renormalization ofs2s

contributes to the crossove

exponentf1. Furthermore, since there is no field renorm
ization ~either at the surface or in the bulk!, this implies that
the exponentb1,dens

Sp is just the same as in the bulk, i.e
b1,dens

Sp 5bdens. However, we must again stress that this res
is only true close tod52.

The situation ind51 is rather different, partly due to th
shift of the bulk critical point away fromsm50. This means
that thed51 transition atsm5sm,critical cannotbe based on
perturbative epsilon expansion calculations down from t
dimensions. However, we can say a little more if we fi
consider the regimesm,sm,critical in d51, where the bulk is
controlled solely by theA1A→B reaction. In that case we
expect the scaling dimension of all thes2l s

to be negative in

d51, following the downward trend in the renormalizatio
mentioned above. In that case surface branching is their-
relevant in d51, leading to the Sp* special ‘‘transition.’
Similarly, at the Sp transition atsm5sm,critical , we might
again expects2l s

to be irrelevant. This will be reflected in
the scaling functions for the density, where~unusually! the
crossover termDs /uDuf1 will now be absent. However, th
surface exponents here will presumably be unrelated to
bulk exponents, since the absence of field renormaliza
mentioned above is not expected to hold all the way down
d51.

Hence, if the above scenario is correct, we do not exp
to see an extraordinary transition ind51 for any finite value
of the surface branching, since the surface branching
always be irrelevant. We have confirmed this analysis
merically: our simulations have found no evidence of an
tive surface state forsm<sm,critical even for very high values
r-
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of the surface branching parameter in a fermionic latt
model in 111 dimensions~see Sec. VI for further details!.

2. µsÞ0 field theory

In this case the reactionA→B is now possible, but only
at sites on the wall. In the bosonic field theory langua
employed above, we have the bare actionSbare5Sbulk

bare

1S2
bare, where

S2
bare5E dd21xi E

0

t

dt~sms
@12ĉs

m#ĉscs1ms@ĉs21#cs!.

~39!

Symmetry~35! is now broken by the surface term propo
tional toms , which describes theA→B reaction. Repeating
our derivation of the classical~mean field! equation for thec
density field, we find

] tc5D¹2c2Dc22lc2, ~40!

where D52msm , and with the boundary condition
D]x'

cux'505Dscs , where Ds52msms
1ms . This is in

agreement with the mean field analysis given in Sec. IV
Note that a boundary term of the formĉs]x'

cux'50 is again
always redundant.

Action ~39! is a bare action whose terms simply repres
the reactionsA→(m11)A and A→B at the surface.
Clearly, however, from these two reactions we can gene
the hierarchy of processesA→mA,A→(m21)A, . . . , A
→2A. Hence we must replace the above bare surface ac
with

S25E dd21xi E
0

t

dtF(
l 51

m

s l s
@12ĉs

l #ĉscs1ms@ĉs21#csG .

~41!

The renormalization of the action~41! is now somewhat
different from thems50 case. We again expect that we ne
only keep the lowest generated branching term on the
face, namely, that withl 51 in Eq. ~41!. As before, we ex-
pect fluctuations to lower the scaling dimension of this co
pling from its mean field value~although actually ind52
this suppression will only be logarithmic!. On the other hand
the efficacy of theA→B reaction is certainlynot reduced by
fluctuations. Hence we expect thatDs→ms2s1s

will always

run to the fixed point at̀ , corresponding to the ordinar
transition. In that case the surfaceb1,dens

O exponent is again
simply related to the bulk result due to the absence of
surface field renormalization. This exponent can be co
puted from the scaling of the surface operator]c/]x'ux'50,

where thex' derivative simply brings out an extra factor o
n' from the scaling function, givingb1,dens

O 5bdens1n' . Us-
ing the resultbdens5dn' from Ref. @6#, we see thatb1,dens

O

5(d11)n' . Again we stress that this result is only tru
close to two dimensions. The more interesting transition
sm5sm,critical in d51 is not perturbatively accessible in ep
silon expansions down fromd52. Nevertheless, we still ex
pect the same general picture to hold with the surfa
branching always being irrelevant, leading to the O* (sm
,sm,critical) or O (sm5sm,critical) transitions.



tu

n
-

r-
ion

on

-

e
a

e
ue

a
e

o
p

i
nt
ce
un
e

ex
h-

ru

re
u
e

e

th

s
e
,

in
a
o

r-
e

e
ust

di-

the
ble

p

ith
ve
ther

ry
c.

he
p

of

ry.

te

e

and
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3. Discussion

From the above analysis we can understand the struc
of the phase diagram close to two dimensions. Forms50
this is similar to the mean field picture, with a special tra
sition point atsm5sms

50, and with the extraordinary tran

sition for sm50,sms
.0. On the other hand, forms.0, the

picture is very different from mean field theory, with reno
malization effects ensuring that only the ordinary transit
is accessible. However, actually ind52 this might be hard
to observe, since in that case the surface branching is
marginally less relevant.

One would now like to use actions~36! and ~39! as the
starting point for a field-theoretic investigation of thesm

5sm,critical transitions ind51, where one would like to iden
tify two independent, nontrivialsurfaceb1 exponents~a fea-
ture which is certainly indicated by our simulations; see S
VI !. Surprisingly, our numerical results also indicate th
these surfaceb1 exponents ‘‘swap’’ if thems50 and ms

Þ0 cases are interchanged~i.e., b1,dens
O 5b1,seed

Sp and b1,seed
O

5b1,dens
Sp ). These interesting results certainly merit furth

analysis. Unfortunately the use of field-theoretic techniq
here will be plagued by precisely the same problems as
flicted the bulk calculation, namely, the appearance of a s
ond critical dimensiondc8 . Hence one would be forced int
using uncontrolled techniques~such as the truncated loo
expansion in fixed dimension! whose values for the bulk
exponents are known to be in rather poor agreement w
numerics @6#. Furthermore, field and diffusion consta
renormalizations, which will be of considerable importan
in d51, are not adequately taken into account in the tr
cated loop theory. In fact these renormalizations only app
at two loop order. Unfortunately the authors of Ref.@6# were
unable to show that a meaningful truncated loop theory
ists at all at the level of two loops. In addition, further tec
nical difficulties exist ford,dc8 involving dangerous irrel-
evant variables, which have so far prevented a derivation
scaling relationsat criticality even in the bulk. In the light of
these problems we have not attempted to extend the t
cated loop analysis to surface BARW.

4. Results from A1A˜B

The ~111!-dimensional regime which should prove mo
amenable to field-theoretic analysis is when both the b
and surface branching processes are unimportant, and h
we should be able to use results derived solely from thA
1A→B reaction. This is the case for the regionsm
,sm,critical in d51 @see Fig. 5~a!#. The Sp* ‘‘transition’’ was
fully analyzed in Ref.@33#, which predicted at21/2 decay
both in the bulk and at the wall, with a density excess at
wall. We note that the critical Sp* state ind51 can be
characterized in two ways: as a decaying density, or a
survival probability. If we place two particles close togeth
in the bulk att50, then, from simple random walk theory
the probability these particles are still alive at timet scales as
t21/2. Hence, in the bulk, these two ways of characteriz
this phase scale in the same way. However, if the two p
ticles are released next to the wall, then it is easy to sh
~using the method of images! that the survival probability
re
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now decays ast21 @37,38#. Therefore, these two characte
izations of the Sp* state donot scale in the same way clos
to the wall.

Since the bulk at thed51 O* transition is controlled
solely by the reactionA1A→B, its properties can also b
inferred. The relevant surface operator is again j
]x'

cux'50. Therefore, since distance still scales as@x#;t1/2,
we can obtain the required surface scaling from simple
mensional analysis. Since the bulkd51 density decays as
t21/2, we see that the surface density must decay ast21.

However, we must emphasize again at this point that
methods and results mentioned here are only applica
where both the surface and bulk branching processes areun-
important. Unfortunately, therefore, the more interesting S
and O transitions in 111 dimensions remain out of reach.

Hence, given the fundamental difficulties associated w
the field theory, it seems fruitful to search for alternati
approaches to the problem which might shed some fur
light on the interesting properties of the surfaceb1 expo-
nents ind51. One such alternative is provided by the theo
of quantum spin Hamiltonians, to which we turn in Se
IV E.

E. Exact results

In this section we will derive some exact results for t
surfaceb1 exponents in 111 dimensions at the O and S
transitions. The methods are a straightforward extension
the work in Refs.@28,39#. The starting point is the following
set of rules for BARW withm52 in 111 dimensions:

BA↔AB with rateD/2,

AA→BB with ratel, ~42!

BAB↔AAA and BAA↔AAB with ratea/2.

Note that these rules are fermionic in character~no more than
one particle per site is permitted! in contrast to the bosonic
rules employed in the derivation of the earlier field theo
The model described in Eq.~42! can be transformed into a
spin picture by writing the configuration of a semi-infini
system as a vectorus1 ,s2 ,s3 , . . . &, wheresi51/2 if the i th
site is empty, andsi521/2 if that site is occupied. Henc
the system ket is given by

uP~ t !&5(
$si %

P~$si%;t !u$si%&, ~43!

and the equation governing the time evolution is

] tuP~ t !&52HuP~ t !&, ~44!

where, using a representation in terms of Pauli matrices,
defining nk5(12sk

z)/2,vk512nk ,sk
65(sk

x6 isk
y)/2, we

have@28#
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H5
1

2 (
k51

`

~D@nkvk111vknk112sk
1sk11

2 2sk
2sk11

1 #

12l@nknk112sk
1sk11

1 # !1
a

2 (
k52

`

~12sk21
x sk11

x !nk

5DHSEP1lHRSA1aHBARW

5D (
k51

`

hk
SEP1l(

k51

`

hk
RSA1a(

k52

`

hk
BARW . ~45!

Here we have used some of the notation of Ref.@28#, where
symmetric exclusion process~SEP! refers to the diffusion
piece, random-sequential adsorption~RSA! to the annihila-
tion piece, and BARW to the branching piece of the ‘‘qua
tum Hamiltonian.’’ Notice that the boundary has been
cluded in~45!, since particles may not hop to the left of si
1, and the annihilation/branching processes have also b
restricted to sites 1,2,3. . . . Hence, the above operatorH
governs the evolution of a~111!-dimensional BARW sys-
temwithoutanA→B reaction at the boundary. Averages a
calculated using the projection state^u5($si %

^$si%u, i.e.,

^F&5^uFuP(t)&. Following Ref.@28#, we now define an op-
eratorD where

D5g21g0g1g2 . . . , ~46!

with

g2k215
1

2
@~11 i !sk

z2~12 i !#,

~47!

g2k5
1

2
@~11 i !sk

xsk11
x 2~12 i !#.

Defining a new ‘‘quantum Hamiltonian’’ as H̃
5@D 21HD#T, we find

H̃5@D2l#(
k51

`

hk
BARW1@a1l#(

k51

`

hk
SEP1l(

k51

`

hk
RSA

1
l

2
@n1n02s1

1s0
11n1v02s1

1s0
2#, ~48!

where we have used the commutation rules described in
tail in Ref. @28#. Hence, whenD5l1a, we have the fol-
lowing processes occurring:

B iAi 11↔AiB i 11 rate~l1a!/2, i 51,2,3, . . . ,

AiAi 11→B iB i 11 ratel, i 51,2,3, . . . ,

B i 21AiB i 11↔Ai 21AiAi 11 ratea/2, i 51,2,3, . . . ,
~49!

B i 21AiAi 11↔Ai 21AiB i 11 ratea/2, i 51,2,3, . . . ,

A0A1→B0B1 ratel/2,

B0A1→A0B1 ratel/2.
-
-

en

e-

Excepting the boundary terms, we see that the Hamilton
has been mapped back onto itself. Furthermore, at the e
the particles may only hop from site 1 to site 0, but never
other way round. This means that we can forget about
zeroth site in exchange for allowing the process
A1A2↔A1B2 ~with ratea/2), andA1→B1 ~with ratel/2).
Hence we see that the new HamiltonianH̃ corresponds to the
case wheremsÞ0, with the DP processesA↔A1A and A
→B generated on the boundary.

If we choose the initial condition to be an uncorrelat
state with density 1/2, denoted byu1/2&, then the density at
site k, rk(t), is given by

rk~ t !5^unkexp~2Ht !u1/2&. ~50!

Following exactly the procedure in Refs.@28,39# @starting
with insertions of the identity operatorDD 21 into the right-
hand side of Eq.~50!#, one can straightforwardly show tha

rk~ t !5
1

2
@12^0uexp~2H̃t !uk21,k&#, ~51!

where ^0u is the vacuum state~with no particles!, and
uk21,k& is the initial state with only two particles situated
sites k21 and k. However, relation~51! is just what we
wanted to prove: the left-hand side is the density at thekth
site, whereas the right-hand side is 1/2 times the probab
that a cluster initiated att50 by two particles at sitesk21
andk has not yet died out by timet. According to our earlier
analysis, forD,0, the left-hand side should scale asuDubdens

~far from the wall! or uDub1,dens
Sp

~close to the wall!, and the

right-hand side asuDubseed ~far from the wall! or uDub1,seed
O

~close to the wall!. Thus, at the lineD5l1a, we have
shown the desired resultb1,seed

O 5b1,dens
Sp ~and, of course, the

bulk resultbseed5bdens). We note that the bulk result wa
proven in Ref. @28#, and a very similar result forA1A
→B, was derived in Ref.@39# ~connecting the O* and Sp*
‘‘transitions’’!. Using universality, we postulate that th
equality between the two surface exponents is valid eve
where close to the transition line, and not just whereD5l
1a.

It is now straightforward to derive the relationb1,seed
Sp

5b1,dens
O ~again at the lineD5l1a). One simply starts off

with the quantum HamiltonianH̃, and then follows the same
steps as above.H̃ can then be mapped back onto the start
HamiltonianH, meaning that the transformation is actually
duality transformation. A relation like that in Eq.~51! can
then be derived, givingb1,seed

Sp 5b1,dens
O .

In summary, at the particular line in parameter spaceD
5l1a, we have derived some exponent equalities wh
are in full agreement with the simulations to be presented
Sec. VI. In particular, we see that we have mapped BARW
the special transition onto BARW at the ordinary transiti
in 111 dimensions~and vice versa!, a rather nontrivial pro-
cedure. This has allowed us to derive some results abou
b1 exponents~something which seems to be beyond the ab
ity of the field-theoretic methods at present!. Unfortunately,
as is always the case with exact calculations, the resu
only derived for one line in parameter space, and we hav
rely on universality in order to claim that it is valid else
where close to the transition line.
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V. DPn AND BARW MODELS

We will now briefly present the specific models an
boundary conditions used in our numerical simulations.
begin with DP, include its generalization to DP2, and th
comment on how we implement BARW. In all cases w
include the specific boundary conditions and identify th
according to the classification in Secs. III and IV.

For d51, bond DP as well as site DP~for which the sites
percolate instead of the bonds!, are contained in the
Domany-Kinzel model@40,41#. Each site can either be activ
or inactive and the probability for sitei to be updated to stat
si ,t11 at time t11 is given byP(si ,t11usi 21,t ,si 11,t). See
Fig. 6 for a typical lattice configuration, and Fig. 7 for th
update rules.

The DP2 model has two symmetric absorbing states
which the system can be trapped. It is a special case
generalized Domany-Kinzel model~DPn) introduced by
Hinrichsen@12#, where each site can be either active or
one ofn inactive states. Forn51 the update rules are iden
tical to those of the Domany-Kinzel model in Fig. 7, but, f
n>2, the distinction between regions of different inacti
states is preserved by demanding that they are separate
active ones. An example of a DP2 cluster is shown in F
8~b!, and we also show an ordinary DP cluster in Fig. 8~a!
for comparison. In 111 dimensions, DP2 belongs to th
BARW universality class, and the update probabilities
given in Fig. 9.

The easiest way of introducing a boundary into DP a
DP2 is simply to cut off the lattice. This is equivalent
introducing boundary sites which are forced to be in one
the inactive states. We will refer to this case as the inac

FIG. 6. Directed percolation in terms of the Domany-Kinz
model, where time flows vertically downward. Black sites are
tive ~A! and white ones inactive (I ). The state of each site at tim
t11 depends on the states of the neighboring sites at timet.

FIG. 7. Update probabilities for DP in terms of the paramet
0<p,q<1, where we haveq5p(22p) for bond DP andq5p for
site DP, respectively. Probabilities for the other configurations
low from left-right symmetry and fromP(Au . . . )1P(I u . . . )51.
e
n

in
a

by
.

e

d

f
e

boundary condition~IBC!, and we choose inactivity of type
1 to the left of the boundary; see Fig. 10. Apart from impo
ing the state of these sites within the wall, the sites at
wall and those in the bulk are updated by the rules in Figs
and 9.

Next we consider the reflecting boundary conditi
~RBC!, where the wall acts like a mirror so that the sit
within the wall are always a mirror image of those next
the wall; see Fig. 11. For DP2, one can see that there
qualitative difference between the IBC and the RBC. For
latter, regions of type-2 inactivity can become trapped at
wall, and the only way for these regions to disappear is
wait for the cluster to return, whereas for the IBC such
gions are never trapped.

We now consider the active boundary condition~ABC!,

-

s

l-

FIG. 8. ~a! A DP cluster, and~b! a DP2 cluster, both grown
from a single seed in the bulk.

FIG. 9. Update probabilities for DP2: black sites are active (A),
whereas white and gray sites are in the inactive statesI 1 and I 2,
respectively. Probabilities for the other configurations follow fro
left-right symmetry and fromP(Au . . . )1P(I 1u . . . )1P(I 2u . . . )
51.
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PRE 61 179SURFACE CRITICAL BEHAVIOR IN SYSTEMS WITH . . .
where the sites within the wall are forced to be active;
Fig. 12. In this case the cluster will never die completely
the wall will always be active and can always induce n
clusters. Nevertheless, by defining the survival time o
cluster as the point in time when the system has no acti
apart from within the wall itself, we can define the sam
exponents for the ABC as for the other boundary conditio
However, we have not studied this boundary condition
any detail but merely mention it here for completeness.

We can now discuss the relation between the ab
boundary conditions and our previous classification of
universality classes at the boundary for BARW in 111 di-
mensions. The key feature is whether the symmetry betw
the two absorbing states in the bulk is preserved at the
face. In terms of the DP2 model, the IBC model respects
symmetry and hence belongs to the special~Sp! universality
class, whereas the RBC model does not respect this sym
try, and hence belongs to the ordinary~O! universality class.
Furthermore, the ABC model clearly belongs to the extra
dinary ~E! universality class. Hence we see that by using
IBC, RBC, and ABC classification all the previously di
cussed boundary BARW transitions in 111 dimensions can
be accessed.

Furthermore, let us note that for DP the classification
the IBC and RBC is somewhat different. In 111 dimensions
DP probably does not support the special transition,
since no symmetry is broken by the RBC, both the IBC a
RBC will belong to the ordinary transition universality cla
@14,22#.

We have also performed simulations for a lattice BAR
model with IBC and RBC boundary conditions. For BARW
we initially placed two particles at the two sites closest to
wall. The one-dimensional BARW model is then impl
mented with ‘‘dynamic branching,’’ which means that th
branching of one particle into three particles occurs r

FIG. 10. DP2 with an inactive boundary condition~IBC!, cor-
responding to the special~Sp! universality class.

FIG. 11. DP2 with a reflecting boundary condition~RBC!, cor-
responding to the ordinary~O! universality class.
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domly to either the left or right of the particle@42#. The
BARW model is expected to be in the same universa
class as DP2, and our results are in agreement with this
both bulk and surface quantities~using the IBC and RBC!.
Hence, in Sec. VI, we will only discuss the results for DP
since this is also the model to which we devoted most of
simulations.

VI. NUMERICAL RESULTS

We studied DP2 in detail using Monte Carlo simulatio
in 111 dimensions. The wall is placed ati 50, and we use
an initial configuration with one active site ati 50, with the
sites i .0 being in the inactive stateI 1. Thus the absorbing
state corresponds to the situation where all sites are in
inactive stateI 1. The system is evolved according to the DP
rules ~see Fig. 9!, and we typically average over 105 inde-
pendent clusters in order to reduce the error bars to a
percent. Using the notation of Fig. 9, we have carried
simulations forq5p at the critical probabilitypc , where we
have used the estimatepc50.5673@12#.

In these simulations, starting from a seed on the wall,
measure the survival probabilityP1(t), the activity in the
bulk N1(t) and at the wallN1,1(t), the average spread of th
cluster^x2(t)&, and the probabilityp1(s) to have a cluster of
size~mass! s, all at criticality @12,23#. Furthermore, by aver-
aging over surviving clusters only~denoted by an over–line!,
we measure the surviving bulk activityN1̄(t) and the surviv-
ing wall activity N1,1̄(t), again starting from a seed on th
wall.

First we performed simulations for DP2 without a wa
and obtained results for the exponents in complete agreem
with those in Ref.@12#. Our results are listed in Tables I an
II. There are several estimates available for the bulk ex
nent bdens(5bseed) @43#. In the following we will use the
estimatebdens50.922(5) @44#.

We now list some exponent relations used to extract
exponents from our numerical simulations@45#. All the rela-
tions given below are valid for both the IBC~special! and
RBC ~ordinary! DP2 transitions, and hence these labels w
be suppressed from now on. The probability for a clus
grown from a seed on the wall still to be alive at timet is
given by Eq.~24!. At criticality (D50) it has the behavior

P1~ t !;t2d1,seed, ~52!

with the exponent

d1,seed5b1,seed/n i . ~53!

FIG. 12. DP2 with an active boundary condition~ABC!, corre-
sponding to the extraordinary~E! universality class.
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180 PRE 61HOWARD, FRÖJDH, AND BÆKGAARD LAURITSEN
TABLE I. Critical exponents obtained from our DP2 simulations. For comparison we also list the e
nents for DP in the bulk and with an IBC wall@15,18,47#. Thed1,seedexponent is obtained from Eqs.~56! and
~57!. Exponents without the ‘‘1’’ subscript refer to the bulk.

DP DP ~IBC! DP2 DP2~IBC! DP2 ~RBC!

k 1̄
0.473 14~3! 0.473 14~3! 0.288~5! 0.287~2! 0.285~2!

ddens 0.159 47~3! 0.159 47~3! 0.287~5! 0.288~2! 0.291~4!

bdens 0.276 49~4! 0.276 49~4! 0.922~5! 0.93~1! 0.94~2!

k 0.313 68~4! 0.000~2!

k1 0.0496~3! -0.354~2! -0.141~2!

d1,seed 0.4235~3! 0.641~2! 0.426~3!

b1,seed 0.7338~1! 2.06~2! 1.37~2!

d1,dens 0.4235~3! 0.415~3! 0.635~2!

b1,dens 0.7338~1! 1.34~2! 2.04~2!

2x 1.265 23~2! 1.150~5! 1.150~3! 1.152~3!

x 0.632 61~2! 0.575~3!

n i 1.733 83~3! 3.22~3!

n' 1.096 84~2! 1.84~2!
x-

te

ge

gh

l-

r-
Hence the probability of growing a cluster which lives e
actly t time steps behaves asp1(t);t212d1,seed. Away from
criticality it is straightforward to obtain the average clus
lifetime of finite clusters from Eq.~24!. One obtains

^t&;uDu2t1, ~54!

with the exponent

t15n i2b1,seed. ~55!

The average number of active sites at criticality, avera
over all clusters, is obtained by integrating the density~25!
over space, and one arrives at

N1~ t !;tk1, ~56!

with

k15dx2ddens2d1,seed, ~57!

where we have introduced the cluster envelope or ‘‘rou
ness’’ exponentx5n' /n i ([1/z), and the notationddens
5bdens/n i . Note that Eq.~57! corresponds to the hypersca
r

d

-

ing relation ~30!, a fact which follows from ^s1(t)&
5*0

t dt8 N1(t8), and the relationg15n i(11k1). By inte-
grating the density on the wall@Eq. ~26!#, we obtain the
average number of active sites at criticality on the wall

N1,1~ t !;tk1,1, ~58!

with

k1,15~d21!x2d1,dens2d1,seed, ~59!

and whered1,dens5b1,dens/n i . Note also that Eq.~59! corre-
sponds to the hyperscaling relation~32! at criticality, since
^s1,1(t)&5*0

t dt8 N1,1(t8), andg1,15n i(11k1,1).
Alternatively, by averaging only over clusters which su

vive to infinity ~denoted by an over-line!, we obtain

N1̄~ t !;tk1
¯

, ~60!

where

k 1̄5dx2ddens. ~61!
wall

TABLE II. Critical exponents for the cluster lifetime@Eq. ~52!# and mass distributions@Eqs.~68!, ~69!,

~72!, and ~73!#. For comparison we also list the exponents for DP in the bulk and with an IBC
@15,18,47#. We also give the exponents for the average lifetime@Eq. ~54!#, and average cluster sizes@Eqs.
~29! and ~31!#, obtained from the scaling relations.

DP DP ~IBC! DP2 DP2~IBC! DP2 ~RBC!

dseed 0.159 47~3! 0.290~5!

d1,seed 0.4235~3! 0.646~3! 0.425~3!

m 1.108 25~2! 1.225~5!

m1 1.2875~2! 1.500~3! 1.336~3!

m1,1 1.189 72~6! 1.7337~2! 1.408~5! 2.05~5! 2.15~5!

t 1.457 34~7! 2.30~3!

t1 1.0002~3! 1.16~4! 1.85~4!

g 2.277 69~4! 3.22~5!

g1 1.8207~4! 2.08~4! 2.77~4!

g1,1 1.180 85~4! 0.2664~3! 1.38~3! (,0) (,0)
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The activity on the wall for surviving clusters reads

N1,1̄~ t !;tk1,1
¯

, ~62!

with the exponent

k1,1̄5~d21!x2d1,dens. ~63!

Simulations in 111 dimensions thus directly yieldd1,dens.
The average position of activity follows from Eq.~25!,

^x2&;t2x, ~64!

wherex is the distance from the seed and the average is ta
over all active points at a given time.

For further confirmation of our numerical data we al
considered the cluster size distributions at criticality. In t
bulk the typical cluster sizes of finite clusters scales as vo
ume times density, i.e.,

s;j'
d j in~D!;uDu21/s, ~65!

with

1/s5dn'1n i2bdens. ~66!

From the lifetime survival distribution~52!, it is then
straightforward to obtain the probabilityP1(s) to have a
cluster of size larger thans, for clusters started from a see
on the wall. Using the fact that the lifetime is set by t
parallel correlation length,t;j i;uDu2n i, we see that the
typical cluster size and lifetime are connected by

s;t1/n is. ~67!

Hence we obtainP1(s);P1(t;sn is);s2b1,seeds. Thus we
eventually obtain the probabilityp1(s) to have a cluster of
exactly sizes,p1(s)52dP1(s)/ds, with the result

p1~s!;s2m1, ~68!

where

m1511
b1,seed

dn'1n i2bdens
. ~69!

Similarly, the cluster size distribution on the wall due to
seed located at the wall can also be obtained. In this case
typical cluster size of finite clusters is

swall;j'
d21j in1~D!;uDu21/s1, ~70!

where

1/s15~d21!n'1n i2b1, dens. ~71!

The resulting distribution reads

p1,1~swall!;swall
2m1,1, ~72!

with

m1,1511
b1,seed

~d21!n'1n i2b1,dens
. ~73!
en

e

the

Note also that many of the scaling expressions given ab
only apply exactly at bulk criticality. Away from that poin
one must also include a scaling function. For example,
~52! is replaced byP1(t,D)5uDub1,seedF(t/uDu2n i), and Eq.
~68! is replaced byp1(s,D)5uDum1 /s G(s/uDu21/s).

In Tables I and II we list our estimates for the critic
exponents for DP2. Our results are in complete accorda
with our theoretical analysis: bulk exponents are unalte
whereas the wall introduces two separate surface expon
We have also carried out bulk and surface simulations
D,0, and confirmed that our data can be collapsed acc
ing to an appropriate survival probability scaling functio
@see Eq.~24! for the surface case#, using our exponent esti
mates. This numerically confirms the validity of the relatio
d5b/n i for the bulk, as well as the analogous relations
both sets of surface exponents@46#.

By using the explicit definitions of the IBC and RBC, w
can deduce some further properties of theb1,seedandb1,dens
exponents. There will be more activity next to the wall f
the IBC than for the RBC, since the latter can have regio
of I 2 located at the wall. Once created, theseI 2 regions will
survive until the activity returns to the wall. Thus it follow
thatb1,dens

IBC <b1,dens
RBC . On the other hand, the existence of the

I 2 regions implies that the survival probability~24! for the
RBC will be greater than for the IBC, leading tob1,seed

IBC

>b1,seed
RBC . Note that both our simulations and our previo

exact calculations show thatb1,seed1b1,dens is the same for
both the RBC and IBC. Using a hyperscaling relation@like
that in Eq.~32!#, this implies thatg1,1

IBC5g1,1
RBC ~although both

exponents defined in this way are negative!. We have also
studied several other boundary conditions, and found
these give the same scaling behavior as either the RBC
IBC depending on whether the above-mentionedI 2 regions
can disappear only at the wall or also in the bulk.

We can obtain an interesting exponent relation for
RBC transition by assuming that the survival probability
dominated by the return to the wall of the cluster-envelo
which leads to@15#

d1,seed
RBC 512x, ~74!

in agreement with our simulation results for the RBC. Qua
tatively, this means that theI 2 regions located at the wal
determine the scaling, since they can only disappear w
the activity returns to the wall. Note that a relation of th
kind clearly fails for the IBC transition. Furthermore, if th
cluster lifetime is defined to be the return time of the clust
envelope~i.e., the return time of the rightmost active site! to
the initial point, then we expect clusters defined in this w
to have a lifetime distribution exponentd1,seedgiven by Eq.
~74!. This prediction is in agreement with the simulations
Ref. @9#, where various models in the DP and BARW class
were studied with cluster lifetimes defined in the way d
scribed above.

For DP it has been customary for some time to investig
whether the critical exponents can be fitted by simple ra
nal numbers@47#. Such a fitting has also been tried for bu
BARW with the following guesses in 111 dimensions:k
5x22d50 andx54/7 @5#. These estimates lead immed
ately to d52/7 ~and b/n'51/2,g5n i). It is intriguing to
note that our numerical results for DP2 also suggest
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182 PRE 61HOWARD, FRÖJDH, AND BÆKGAARD LAURITSEN
m153/2 for the IBC and 4/3 for the RBC. From Eq.~69!, it
then follows thatd1,seed59/14 for the IBC and 3/7 for the
RBC. We would need one more relation in order to obt
the last independent exponent, which we can take to ben i .
In fact, we observe numerically that the relation 2n i
2b1,seed2b1,dens53 is valid to within 1%. From these ob
servations the remaining DP2 exponents follow:bdens
5bseed512/13, n i542/13, and n'524/13. Furthermore
b1,seed527/13 andb1,dens518/13 for the IBC, and vice vers
for the RBC. However, at present we have no understand
of these possible exact values for the~111!-dimensional ex-
ponents. BARW is certainly not conformally invariant, an
consequently until some theoretical framework is propo
to explain why these exponents could be rational numb
numerical coincidence remains a distinct possibility.

VII. CONCLUSION

In this paper we have presented a study of critical surf
effects in systems with nonequilibrium phase transitions
particular we have focused on the DP and BARW univers
ity classes, where we have put forward a unified presenta
involving mean field, scaling, field-theoretic, and exa
methods. Furthermore, many of our theoretical conclusi
have been backed up by large-scale Monte-Carlo sim
tions.

Nevertheless, there are still a number of open questi
In particular, our understanding of surface BARW in 111
dimensions is hampered by the fundamental problems of
, i

-

ae

e

E

n

g

d
s,

e
n
l-
n

t
s

a-

s.

e

field theory, which mean that the boundary~and bulk! tran-
sitions occurring atsm5sm,critical remain difficult to treat
using RG methods. Furthermore, we have concentrated
the ordinary and special transitions in~111!-dimensional
BARW—there will most likely also be interesting behavio
for the extraordinary transition.

Finally, our most important result is the existence of tw
independent surface exponents:b1,densandb1,seedfor surface
BARW ~and DP2!. This certainly distinguishes DP from
BARW, since, for the former case,b1,seed5b1,dens. For the
~111!-dimensional BARW case, on the other hand, we ha
used exact techniques to link the surface exponents at
ordinary and special transitions, givingb1,seed

O 5b1,dens
Sp and

b1,seed
Sp 5b1,dens

O . It would certainly be instructive to rederiv
these results from a field-theoretic perspective, but this
beyond the scope of the present paper.

ACKNOWLEDGMENTS

We would like to thank Tim Newman, Beate Schmit
mann, and Uwe Ta¨uber for very useful discussions. M.H
acknowledges support from the U.S. National Science Fo
dation through the Division of Materials Research, and
grateful for hospitality and financial support from the CAT
group at the Niels Bohr Institute, where part of this work w
performed. P.F. acknowledges support from the Swed
Natural Science Research Council. K.B.L. acknowledg
support from the Carlsberg Foundation.
ani,

.

cs
@1# For reviews of surface critical phenomena, see K. Binder
Phase Transitions and Critical Phenomena, edited by C.
Domb and J. L. Lebowitz~Academic Press, London, 1983!,
Vol. 8; H. W. Diehl, in Phase Transitions and Critical Phe
nomena, edited by C. Domb and J. L. Lebowitz~Academic
Press, London, 1986!, Vol. 10; Int. J. Mod. Phys. B11, 3593
~1997!.

@2# W. Kinzel, in Percolation Structures and Processes, edited by
G. Deutscher, R. Zallen, and J. Adler, Annals of the Isr
Physical Society Vol. 5~Adam Hilger, Bristol, 1983!.

@3# R. Dickman, inNonequilibrium Statistical Mechanics in On
Dimension, edited by V. Privman~Cambridge University
Press, Cambridge, 1997!.

@4# H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett.68, 3060
~1992!.

@5# I. Jensen, Phys. Rev. E50, 3623~1994!.
@6# J. Cardy and U. C. Ta¨uber, Phys. Rev. Lett.77, 4780~1996!; J.

Stat. Phys.90, 1 ~1998!.
@7# P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A17,

L105 ~1984!; P. Grassberger,ibid. 22, L1103 ~1989!.
@8# M. H. Kim and H. Park, Phys. Rev. Lett.73, 2579~1994!; H.

Park, M. H. Kim, and H. Park, Phys. Rev. E52, 5664~1995!.
@9# W. M. Hwang, S. Kwon, H. Park, and H. Park, Phys. Rev.

57, 6438~1998!.
@10# W. M. Hwang and H. Park, Phys. Rev. E59, 4683~1999!.
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Jensen, Physica A247, 1 ~1997!.

@16# M. A. de Menezes and C. F. Moukarzel, Phys. Rev. E60, 5699
~1999!.

@17# E. Carlon, M. Henkel, and U. Schollwo¨ck, Eur. Phys. J. B12,
99 ~1999!.

@18# J. W. Essam, A. J. Guttmann, I. Jensen, and D. TanlaKish
J. Phys. A29, 1619~1996!.

@19# I. Jensen, J. Phys. A32, 6055~1999!.
@20# H. Hinrichsen and H. M. Koduvely, Eur. Phys. J. B5, 257

~1998!.
@21# C.-C. Chen, H. Park, and M. den Nijs, Phys. Rev. E60, 2496

~1999!.
@22# K. B. Lauritsen, P. Fro¨jdh, and M. Howard, Phys. Rev. Lett

81, 2104~1998!.
@23# P. Grassberger and A. de la Torre, Ann. Phys.~N.Y.! 122, 373

~1979!.
@24# J. L. Cardy and R. L. Sugar, J. Phys. A13, L423 ~1980!.
@25# H. Janssen, Z. Phys. B42, 151 ~1981!.
@26# P. Grassberger and K. Sundermeyer, Phys. Lett. B77, 220

~1978!.
@27# Note that the convention used forD here is different from that

in Ref. @22#.
@28# K. Mussawisade, J. E. Santos, and G. M. Schu¨tz, J. Phys. A

31, 4381~1998!.
@29# J. L. Cardy,Scaling and Renormalization in Statistical Physi



.

if-
lar

tic

PRE 61 183SURFACE CRITICAL BEHAVIOR IN SYSTEMS WITH . . .
~Cambridge University Press, Cambridge, 1996!.
@30# Note that the mean field surface density exponentb1,dens

IBC

quoted in footnote@22# of Ref. @22# is incorrect.
@31# For D.0 we havens5(3Ds

2/2Dl)2(3D/2l), whereas for
D,0 we have ns5(3Ds

2/2Dl)2(3D/2l)1(2D2D3/9lDs
4)

plus higher order terms.
@32# A. J. Bray and M. A. Moore, J. Phys. A10, 1927~1977!.
@33# M. J. E. Richardson and Y. Kafri, Phys. Rev. E59, R4725

~1999!; Y. Kafri and M. J. E. Richardson, J. Phys. A32, 3253
~1999!.

@34# A. Drewitz, R. Leidl, T. W. Burkhardt, and H. W. Diehl, Phys
Rev. Lett.78, 1090~1997!.

@35# L. Peliti, J. Phys.~France! 46, 1469~1985!.
@36# B. Lee, J. Phys. A27, 2633~1994!.
@37# D. ben-Avraham, J. Chem. Phys.88, 941 ~1988!.
@38# D. Considine and S. Redner, J. Phys. A22, 1621~1989!.
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