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We study the surface critical behavior of branching-annihilating random walks with an even number of
offspring (BARW) and directed percolatiofDP) using a variety of theoretical techniques. Above the upper
critical dimensionsl;, with d.=4 (DP) andd.=2 (BARW), we use mean field-theory to analyze the surface
phase diagrams using the standard classification into ordinary, special, surface, and extraordinary transitions.
For the case of BARW, at or below the upper critical dimensietd,, we use field theoretic methods to study
the effects of fluctuations. As in the bulk, the field-theory suffers from technical difficulties associated with the
presence of a second critical dimension. However, we are still able to analyze the phase diagrams for BARW
in d=1 and 2, which turn out to be very different from their mean field analog. Furthermore, for the case of
BARW only (and not for DP), we find two independent surfage, exponents ind=1, arising from two
distinct definitions of the order parameter. Using an exact duality transformation on a lattice BARW model in
d=1, we uncover a relationship between these two surfacexponents at the ordinary and special transi-
tions. Many of our predictions are supported using Monte Carlo simulations of two different models belonging
to the BARW universality class.

PACS numbds): 05.40—-a, 64.60.Ak, 64.60.Ht

I. INTRODUCTION Some examples include epidemics, chemical reactions, ca-
talysis, and the contact procesee Ref[3] and references
The study of surface critical behavior in equilibrium sta- thereir).
tistical mechanics has established the importance of bound- During the last few years, however, studies have also
aries in critical systems and their impact on scaling and unibeen carried out for systems with absorbing states which do
versality [1]. Quantities measured close to the surface camot belong to the DP class. For instance, the model of
scale differently than in the bulk, and can possess distindbranching-annihilating random walkwith an even number
critical surface exponents. Depending on the boundary coref offspring(BARW) exhibits quite different behavigd—6],
ditions, various surface universality classes are possible ea@nd defines a separate universality class. Other models in this
with different values for the surface exponents. In this papetlass(at least ind=1) include certain probabilistic cellular
we will be interested in the surface critical behavior of cer-automata[7], monomer-dimer model§8—10, nonequilib-
tain dynamicsystems, which possess a nonequilibrium phaseium kinetic Ising model$11], and generalized DP with two
transition from an active into an absorbing state from whichabsorbing stateé€DP2) [12]. These models escape from the
the system cannot escape. DP universality class by possessing an extra conservation
The most prominent example of a system with an absorblaw or symmetry: for the BARW model, a “parity” conser-
ing state isdirected percolation(DP). It describes the di- vation of the total number of particles modulo 2; for the
rected growth of a cluster governed by a growth probabilityother models, an underlying symmetry between their absorb-
p of its fundamental constituents. For probabilities below aing states.
critical value,p<p., the cluster will die after a finite time, In the present paper we study the impact of surfaces on
which means that the system becomes trapped in thehe critical behavior of the DP and BARW models. Previous
vacuum—the unique empty state. On the other hand, for higlvork has concentrated on surface effects in DP using field
enough growth probabilities>p., there is a finite probabil- theoretic methodg$13,14], Monte Carlo simulations ird
ity that the cluster will always remain active. Exactly@t =1 and 2[14-16, the density matrix renormalization group
=p., there is a critical phase transition from the active intoin d=1 [17], and series expansions =1 [18,19. Rela-
the absorbing stafe?]. A whole range of other systems pos- tions between surface DP and local persistence probabilities
sessing a phase transition from a nontrivial active phase intwere explored in Ref20]. Work has also been performed on
a unique absorbing state fall into this universality classactive, but slanted, walls in DP, which give rise to a “cur-
tain” of activity whose width is given by an angle-dependent
correction to bulk DP[21]. Critical surface effects for a
*Present address: Department of Physics, Simon Fraser Univemodel in the BARW universality class were first studied in
sity, Burnaby, British Columbia, Canada V5A 1S6. Electronic ad-Ref.[22]. In this paper we will build on this earlier work by

dress: mjhoward@sfu.ca presenting a unified picture of surface critical behavior of
"Electronic address: frojdh@physto.se both BARW and DP. After summarizing the main details of
*Electronic address: baekgard@nbi.dk DP and BARW in the bulk, we present a comprehensive
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analysis of the surface critical behavior of both models using (a) (b)
mean field theory. This involves the usual classification into
ordinary, special, surface, and extraordinary transitions.
However, below their respective upper critical dimensions,
fluctuation effects become important in both models, and this
leads to the breakdown of mean field theory. In order to
understand this fluctuation regime we employ a variety of
theoretical techniques. First, we construct a phenomenologi-
cal scaling theory which is able to describe the various sur-
face universality classes. This scaling theory for BARW can
then, to some extent, be justified using field-theoretic tech-
nigues(a field theory for surface DP was already presented
in Ref.[13]). However, the BARW field theory suffers from
technical problems associated with the presence of a seconc
critical dimension, which means that the interestihg 1
regime cannot be accessed satisfactorily. Nevertheless som
results can be derived field theoretically which we put to-
gether to draw up &l1+1)-dimensional surface phase dia-
gram. This phase diagram displays many differences from its
mean field analog. In addition, using exact techniques in-
volving a mapping to a quantum spin Hamiltonian, we have
been able to establish an exact duality transformation for
lattice BARW model ind=1. We find that this links to-
gether two of the boundary phase transitionsdinl in & |\ing reaction scheme for a single species of diffusing par-
nontrivial way (as suggested in Ref22]). We have also jgles:

performed extensive Monte Carlo simulations for BARW

FIG. 1. DP clusters grown from a single sgeglin the bulk and
ﬁ)) next to a wall.

and DP2 which support many of our theoretical conclusions. A—A+A with rateo,
The paper is organized as follows: in Sec. Il we briefly
introduce the bulk DP and BARW models. Then in Sec. IlI A+A—A with raten 1)

we consider the surface behavior of DP, where we present an
extensive mean field analysis. We also summarize details of
the fluctuation regime fod<<d.=4. In Secs. IV A and IV B,

we give the phase diagram for surface BARW in mean field

where, in the corresponding lattice model, we allow for mul-

theory and ind=1, respectively. These results can be Con'tiple (bosonig occupancy of any given site.

tained within a scaling theory presented in Sec. IV C. We The second system which we will analyze in detail is the

then discuss in Sec. IV D how this analysis can be partiallygs Ar\w model [4-6]. This is defined again by éosonig
justified using field theoretic methods. In Sec. IV E, we giveparticle model, with the following reaction processes:
some exact results fat=1. Our theoretical analysis is then

A— withrateu,

backed up using computer simulations of the lattice models A—(m+1)A with rateo,,,
introduced in Sec. V. Details of these simulations are pre- )
sented in Sec. VI. Finally, in Sec. VII we round off with A+AC with ratex

some conclusions.

For m odd, the above model is known to belong to the DP
universality class; however, fon even, we have a new uni-

Il. BULK DP AND BARW versality class. Unless otherwise specified when we refer to
the BARW model we will be referring to the even case.

We begin by briefly reviewing the definitions of the DP  The growth of both BARW and DP clusters in the bulk
and BARW models. The update rules for bond DRJif 1 close to criticality can be summarized by a set of indepen-
dimensions on a tilted square lattice are easily defined: fodent exponents. A natural choice is to considerand v,
each site at timd, form bonds with probabilityp to the  which describe the divergence of the correlation lengths in
neighboring sites at time+1 [2]. An example of a cluster space¢, ~|A[~ ", and time & ~[A["I. Here the parameter
grown from a single seed according to these rules is showA describes the deviation from the critical poifh mean
in Fig. 1(a). field theoryA = u— o for DP, butA = —mo,, for BARW).

For growth probabilities below a certain threshold such aWe also need the order parameter exporgnishich can be
process will eventually die out, whereas for higher valueglefined in twoa priori different ways: it is either governed
there is a finite probability of survival, which means that theby the percolation probabilitythe probability that a cluster
system is in the active staf@3]. As is well known[24-26,  grown from a finite seed never djes
various reaction-diffusion models also fall into the DP uni-
versality class. The simplest of these is defined by the fol- P(t—o,A)~|AlPseed A<O, (3)
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(a) (b) A

0 qu O csrn.criticenl Q.I

FIG. 2. Schematic bulk behavior for BARW of the densitas
a function of the branching raie,, for (a) d=2 and(b) d=1.

or by the coarse-grained density of active sites in the stead FIG. 3. Schemat?c mean field ph_ase diagram for surface DP. See
state ext for an explanation of the labeling.

N(A)~|A|Pdens A<O. (4) Despite the problems associated with BARW ébrd,,
we can still put forward a general scaling theory for DP and

When A<O0 the system is said to be in aactive state, BARW, valid both above and below their critical dimen-
whereas forA=0 the system isritical (with an algebra- sions. However, we must retain a possible distinction be-
ically decaying density and for A>0 (if applicablg the  tweenBgs.eqandByens: FOr example, the average lifetinge)
system isinactive (with an exponentially decaying density of finite clusters can be derived from the scaling form for the
[27]. For the case of DP, it is known tha@ is unique: survival probability
Bseed Bdens iIN any dimension, both above and below the
upper critical dimensiond.=4. This follows from field- P(t,A)=|A[Pseedp(t/€)). ®
theoretic considerationg23,24], and has been verified by
extensive numerical work. The relation also holds for . ) .
BARW in 1+1 dimensions, a result first suggested by nu-ate scaling form for the dens_lty(x,t), given that the cluster
merics and now backed up by an exact duality mappagy ~ Was started ax=0andt=0, is
However, this exponent equality is certainly not always true:
if we consider the BARW mean field regime valid for spatial

dimensionsi>d.=2, then the system is in a critical inactive Notice that rotational symmetry about the seeding peint
state only for a zero branching rate, where the density decays g implies that the spatial coordinates enter the scaling
away as a power law. However, any nonzero branching ratgnction only asx=|x|, the distance from the seeding point.
results in an active state, with a nonzero steady state dens@sing expressiori6) we see that the average mass of finite

[see Fig. 2a)] [6]. This density[Eq. (4)] approaches zero cjysters(s)~|A|~7, is related to the other exponents via the
continuously(as the branching rate is reduced toward zero following hyperscaling relation

with the mean field exponem ., 1. Nevertheless, fod

>2, the survival probabilitfEq. (3)] of a particle cluster v|+dv, = Bseedt Bdenst V- (7)

will be finite for any value of the branching rate, implying

that Bs.eq= 0 in mean field theory. This result follows from Note that Eq(7) is consistent with the distinct upper critical

the non-recurrence of random walksdor 2. dimensions for BARW and DP. Using the above mean field
Field theoretically, DP is believed to be satisfactorily values for BARW andv, =1/2, vj=1, andy=1, we verify

understood—the appropriate field thedqgometimes called d.=2. In contrast, for DP one has the mean field exponents

Reggeon field theohy 24,26 is well under control and the Bgens Bsee— 1 andd.=4.

exponents have been computed to two loop order irean

=4—d expansion{25]. However, for the case of BARW, a Ill. SURFACE DP

description of the(1+1)-dimensional case poses consider-

able difficulties for the field theor}6]. These stem from the We now briefly review the surface critical behavior of

presence of two critical dimensionsi;=2 (above which  pp and indicate how the above relations and exponents are

mean field theory appli¢sand d;.~4/3. Ford>d( the be-  modified in a semi-infinite geometry, where we place a wall

havior of Fig. Za) holds, i.e., an active state results fary  at x, =0 [x=(x.,x,), with the L and | directions being

nonzero value of the branching,,, whereas fod<<d; the  relative to the wall. An example of such a cluster grown

system is only active foo> o criica, @S Shown in Fig.  close to a wall is shown in Fig.(t).

2(b) [6]. This means that the physical spatial dimensibn A schematic phase diagram for surface DP is shown in

=1 cannot be accessed using epsilon expansions down frofig. 3 (see Ref[13]), whereA is the deviation of the sur-

the upper critical dimensiod.=2. Furthermore, for the face from criticality. In Fig. 3, the labeling conforms to the

om<0m critical '€QION, the system igotinactive(in the sense  standard nomenclature of surface critical phenomena: O

of an exponentially decaying densitylnstead this entire stands for the ordinary transitidbulk critical, surface inac-

phase is controlled by the annihilation fixed point of the tive); Sp is for the special transitiofbulk and surface both

+A—J process, where the density decays away as a powaeritical); S is for the surface transitiofsurface critical, bulk

law. Hence this phase should rather be considered as stilhactive); and finally E stands for the extraordinary transition

being critical. (surface active, bulk critical

We then find(t)~|A| ™7, wherer= v — Bseeq The appropri-

N(X,t,A) =| A|Bseed Baend (x/ £, ,1/¢)). (6)
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The bulk exponents are, of course, unchanged by the presshere n"=d?n/dx* . The appropriate boundary condition
ence of a surface and, furthermore, one can show that th@) is given by
correlation length exponents on the surface are also the same
as in the bulk. Hence, except at the special transition, one Dn.=Ag4ng, (13
finds justone extra exponent: the surface density exponent
B1.gens This is defined from the steady-state density at thevhere ns=nlxl=0, and ngzdn/dxl|xl=0. Multiplying Eq.

wall. For example, at the ordinary transition, we have (12) by n’ and integrating, we have
(0]
N(x, =0A)~[A|Prdens A<O. ® EDn’z— EAnz— 1)\n3+C=0 (14)
2 2 3 '

On the other hand, at the multicritical special transition, one

finds two independent surface exponents—a new surfac#vhereC is a constant of integration. Using the bulk results
density exponentBi%,,, and a crossover exponety. In  n'=0, andn=(—A)/\ for A<0, orn=0 for A>0, we
principle one could also allow for a second type of surfacehave

B1 exponent, one defined from a survival probability for 12

1/2

clusters started on the wall. For example, at the ordinary AS”S:_[L} ( _H)(En _|_u [A<0]

transition, we would have D D S NJ\3°°% 3\ ’
(15

o
Pi(t—oe,A)~|A[Prseeg A<O. 9 AN £ 1172 12
s''s

=—|=| Ng|zNst — A>0], 16
However, the surface exponents here show a similar pattern D D 5(3 : )\) [ ] (19

to their bulk counterparts and fquileseef deenf B, as
can be shown by a field-theoretic derivation of an appropri ) " X
ate correlation functioi14]. This kind of equality should Ordinary transition ConS|der_the case where;>0 and
also hold for theB, exponents at the special and surface® —0 - In that case vv-e-expegt—|A|/)\>nS, and thus Eg.
transitions. (19) yields ng|A|%, giving B7= 3/2. _

Numerically, the exponents at the ordinary transition have This exponent can also be derived on physical grounds as
d=1) [18,19, and Monte Carlo simulationéor d=1 and density falls to zero not exactly at the wall, but would rather
2) [14-16. However, there has been no numerical work toreach zero a distandgon the far' side of the surfadé 'the
date on any of the other possible transitions on the boundarfi€nsity were appropriately continuedience the density on
the boundary can be computed frént . Sincel is a micro-
scopic distance which remains finite even at the bulk critical
point, one can compute the scaling of the surface density

Although a considerable amount of work has already beegimply from ne=dn/dx, |, —o. Thus, from dimensional
performed on surface DFL3-15,18, a comprehensive mean analysis, we see tha®= 3/5
field analysis has been lacking. The purpose of this section is ! oL T n
to provide such an analysis, and in the process we will derive% Special transition In this case ifAs=0 we see from Eq.

) . . i 15) thatng scales in the same way as the bulk densjtye.,
several interesting results. The equation describing meal SP—1 [30]. Furth impl iti f Eqdl5
field DP with a surface is 7P=1 [30]. Furthermore, a simple rewriting of Eq&L5)

and (16) reveals the scalings~A?, fixing the crossover

where we have also used the boundary condi(is).

A. Mean field theory

4n=DV?n—An—\n?, (10)  exponent asp; =1/2.
Surface transition For this caseA ;<0 and A>0, and,
with the boundary condition hence, from Eq(16) we find ns=(3/2D)\)[A§— DA] for 0
<DA<AZ, andng=0 for DA>AZ. Hence the line in pa-
Daxln|xL=0:Asn|xL=0- (11 rameter space where the mean field surface transition occurs

is given by A2=DA giicar» and we then havggi=1. Note
Here the variableA =u—o is the difference between the that this is the same value as in the bulk, a standard feature of
rates for theA— and A—A+ A processes. Similarly we the surface transition which is believed always to be in the
have the surface variablk, and the bulk quadratic term is same universality class as d- 1)-dimensional bulk transi-
due to the reactiolA+A—A. Note that a surfaceA+A  tion. As we are dealing with mean field theory this will of
— A reaction does not have to be included, as it is an irrelcourse yield the same exponent for the surface transition as
evant process in the renormalization gra&%) sensg13].  in the bulk.
From the above equatidi0), the bulk mean field exponents Extraordinary transition In this case the surface density
can easily be computedy=1, v, =1/2, and@=1. Further- is of course nonzero both above and below the transition.
more, with the inclusion of a boundary, we see that the corHowever, if we expandi in powers ofA for A;<O and
relation length exponents are unchanged at the wall but tha—0" or 0~, we see that these two expansions differ at
surfaceB; exponents are altered. If we are interested in thehird order[31], i.e., ng has a discontinuity in its third de-
mean field steady state, then we can replace(Eg). with rivative atA=0. Hence we identify,szS. To the best of

our knowledge, this transition does not seem to have been

Dn”"—An—\n?=0, (12 previously discussed in the literature.
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However, as is the case in equilibrium critical phenom- B. Beyond mean field theory

ena, we expect the extraordinary transition to be more gen- \yo expect that the phase diagram shown in Fig. 3 is
eral than the scenario described above. In fact, the eXtraob'enerally valid for surface DP close to the upper critical

dinary transition is associated with the onset of order in they;ansiond.=4. However. in # 1 dimensions. where the
(o] . 1 1

bulk regardless of how the surface is ordered. In particularg,t5ce is just a zero-dimensional point, the phase diagram

for ar_bitrary valu_es ofAs, the surface can be order(_ad .by may look rather different. For example, for an inactive bulk,
applying the equivalent of a §urf_ace external magnetic fl‘aldnet particle production is only possible at one point. Further-
For the BARW process this is simply the surface spontaneqre, since particles will be constantly lost into the bulk,
ous particle creation reactigi— A. Extending our previous \yhare they will decay away exponentially quickly, it will

mean field apglysis to cover this c_a(wmetimes called the probably not be possible to form an active surface state
normal transition, we recover precisely the same results a§g,gt for finite particle production ratesf this is the case
obtained above, witt1=3. Hence the important point for oy the ordinary transition will be accessibledn-1. Fur-
the extraordinary transitiofas described in Ref32]) isthat  thermore, for arbitrary dimension, we note that a system
the surface must be active &t=0—the means by which this \yhich is simply cut off atx, =0 can also only undergo an
is achieved is unimportant. . - ordinary transition. This is a result of there being the same
Next, we consider the case where the bulkxactlycriti-  microscopic reaction rates on the surface as in the bulk. In
cal, i.e., A is exactly zero, and therefore the correlation oy dimensions it becomes more and more difficult to induce
lengths¢) and &, diverge. In that the case the density in the gn active statdsince the fluctuations become largeand,
bulk decays away adn/dt=—An*=n~t"*. Hence, forthe hence, if the bulk is adjusted to be at criticality, it follows
surface, we need now to include time dependence in ouhat the surfacdconsidered independentlyvould be inac-
analysis, and therefore E(L2) is replaced by tive. Therefore, for the case of DP, one will only be able to
find the ordinary transitiortas was certainly the case in the
17) simulations of Ref[14]).
The scaling forms for the survival probabilitat the or-
dinary transition and correlation functiongat the special
wheren=4;n and the boundary condition remains as givenand ordinary transitionsvere discussed in Refsl3,14. For
in Eq. (13). Multiplying both sides of Eq(17) by n’ and example, at the ordinary transition, the survival probability
integrating, we obtain for a cluster started on the wall &0 has the scaling form
[14]

n=Dn"—\n?

> . 1 1 o
J dXLnn'=—ﬁA§n§—§7\(n3—n§), (18 Pi(t,A)=]A[Proy(t/€). (19
0

Hence the average lifetime of finite clusters at the ordinary

where we have used the conditions=0 (in the bulk and transition,<t>~|A|_T(1), satisfiesr{=— 87, a straightfor-

the boundary conditio(13). ward generalization of the bulk result. Previous series expan-
Exactly at the extraordinary transitiorHere the density ~sions in 1+ 1 dimensions have indicated a value #§requal

close to the wall will be in an active steady state, and hencéo unity [18], although very recenand even more accurate

nearbyh will be close to zero. However, well away from the series result$19] have cast some doubt on this conclusion.

surface we expect to recover bulk behavior where:0 and ~ No theoretical explanation for why? should be equal to

n~t~1. Hence, to leading order the integral on the left-handunity has emerged.

side of Eq.(18) will be zero. Therefore, from Eq18), we The bulk densityn(x,t) for a cluster initiated on the wall

find a steady state on the surface with=3A%/2D\. Fur- ~ att=0 is given by[13,14

thermore, we expect that this active region will extend into o

thﬁe2 bulk, with the denglty decaying away asymptopca_lly .as n‘f(x,t,A):|A|:3;L+ﬁfl[x/§L 'tlfH]’

X, . However, assuming the system is started with initial (20)

conditions at=0 of constant density everywhere, then after s Sp,.

a timet this region will only extendyinto t%e bulk as far as YA A, Ag) =[ A% PlxE. té) Asllal?,

x, ~t¥2 where we will find a crossover to the butk*

density decay. where the surface ex.p.onengs have been caslculatdﬂ(t@
Exactly at the special transitiorHere, whereA;=0, we ~ =4—d) in Ref.[13], giving 7=3/2-7€/48, B1°=1~€l4,

see that the mean field equatioh8) is solved byns=n  and¢;=1/2—¢€/16. The first of the expressions in EQO)

~t~ 1. Hence the surface density scales in the same way as fgfers to the ordinary transition and the second to the special

the bulk (see also Ref.33]). transition. Crudely speaking, tha prefactor in Eq.(20)
Exact|y at the ordinary transitionOnce again, if we start comes from Eq(lg) fOI’ the prObablllty that an |nf|n|te ClUS'

with initial conditions of uniform density at=0, then at ter can be grown from the seed, and from &4). for the

later times a depletion zone will be formed close to the surconditional probability that the pointx(t) belongs to this

face. This zone will again extend a distance of otd&rinto  cluster. At the ordinary transition, for example, it is then

the bulk. The surface scaling can now most simply be destra_lg.htforward to dgrlve hyperscaling relations for the mass

rived via dimensional analysis of the surface operatopf finite clusters Wh(I)Ch are seeded on the wall. This mass

dy Nlx, =0, yielding ng~t=%2 scales ags,)~|A| 71, and, as shown in Ref14], one finds
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q, (@) ()
s *. Sp* * Sp
E Sp
Oo* o
@) T M
Th FIG. 5. Schematic surface phase diagrams for BARWinl

for (@ om<omcritical» @aNd (B) o= 0 criticar- S€€ the text for an
explanation of the labeling.

dividing the extraordinary and ordinary regions. This ex-

G plains the general features of the phase diagram in Fig. 4.
FIG. 4. Schematic mean field surface phase diagram for BARW, At @ more quantitative level, the mean field equation for
See the text for an explanation of the labeling. BARW is very similar to that for DP,
o o dn=DV2n—An—\n?, (22)
V“"‘dvj_:ﬂl'i‘ﬁ‘f"yl. (22

) . . ) _with the boundary condition
For a more detailed discussion of the DP ordinary transition,

including other types of hyperscaling, we refer to R&f4]. Dy Nlx, =0=Asnlx, =o- (23

IV. SURFACE BARW However, the values of th&,A  parameters are now differ-
ent: A=—mo, and Ag;=— Mom + s The fact thatA is

per, an understanding of the surface critical properties o Iways_: nonpositive excludes any possibility of a surface
ransition. Otherwise we expect the same mean field expo-

BARW. We will begin by discussing the BARW surface . X : "
phase diagram in various dimensions. The basic idea is thitems as in DP for the special and ordinary transitif8@

We now turn our attention to the main object of this pa-

on e sriace we may ncuce o only he sl brancing 251 9% uEpOIens see peubioveuer e
and annihilation reactions, but potentially also a parity sym- positvity E . guity .
metry breakingA—<J reaction. Depending on whether or the definition Ofﬂlyd%ns we WOUId. have to know the pehawor
not theA—J reaction is actually present, we may then ex-Of the surface density on both sides of the extraordinary tran-

pect different surface universality classes according tc§ition if we wanted to isolate the discontinuity and extract

; e exponent.
whether the symmetry of the bulk is broken or respected arth We can also consider the mean field behavior of the

the surface. A similar situation in an equilibrium system was S :
recently analyzed in Ref34]. We will find that the compe- B1,seeq €XpONENS, W_h'Ch IS very .d|ﬁerent_from the corre-
tition between the parity breaking—(J reaction and the sponding behavior in DP. Consider placing two p"’?r“c'es
BARW processes gives fise to some interesting phase didiext to the surface at=0. From the recurrence properties of
grams. random walks we see that, regqrdless_of the reaction rates on
the surface or in the bulk, there is a finite chance that the two
particles will never meet again. Hence the survival probabil-
ity is nonzerg and thusp; sce=0 in mean field theory for
The surface phase diagram for the mean field theory ofhe ordinary and special transitions.
BARW (valid for d>d =2) is shown in Fig. 4. Herer,

and O, are the rates for the branching procesges (m B. Phase diagram in H#1 dimensions

+1)A in the bulk and at the surface, respectively, ands Next we turn our attention to the phase diagram ferll

the rate for the surface spontaneous annihilation rea&ion yimensions shown in Fig. 5. Although we will make a few

—(J. Otherwise, the labeling is the same as that for the DRemarks below, we will postpone a proper justification until

phase diagrantsee Fig. 3 o ~ we have discussed the appropriate field theory in Sec. IV D.
The first feature to note is that the bulk is either activeThe phase diagram looks quite different from its mean field

(om>0) or critical (¢n=0), but never inactive. Hence, un- analog due in part to the shift of the bulk critical point away

like DP, there is no possibility of finding a surface transition, from zero branching rate, but also due to the absence of any

where the surface is critical with the bulk ma-ct.lve. For theextraordinary transitiorfor finite reaction rates Physically,

case wherer,,= us= 0, we expect that for any finite value of thjs is due to the fact that excess particle productisith a

the surface branching, the surface will become active. Thiginjte reaction rateat a zero-dimensional surface is simply

corresponds to the extraordinary transition with an activehgt efficient enough to generate an active state, due to leak-

surface and critical bulk. On the other hand, fngzams age into the critical bulkwhich for o< o critcal IS CON-

=0 and >0, the density at arfisolated surface would trolled by the fixed point of thé\+ A— & reaction[6]).

decay away exponentially quickly due to the-J reaction. However, for infinite branching rates and/or if the reac-

Hence the bulk is critical, with the surface inactive; i.e., thetion &J—A is added at the surface, then an extraordinary

ordinary transition. Consequently wiil,,=0, but bothugs  transition should become accessible, although we will not

andoy_nonzero, there should be a line of special transitionsonsider this case in any further detail. The other main fea-

A. Mean field phase diagram
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tures of the phase diagram int1 dimensions are outlined be grown from the seed, and from E@) for the (condi-

below. tional) probability that the pointX,t) belongs to this cluster.
Sp*: For o <om criica @Nd us=0, the system is con- The shape of the cluster is governed by the scaling function

trolled everywhere by the annihilation fixed point. In that g, and we assume that the density is measured at a finite

case one has the special transition, but now in a slightlyangle away from the wall. If the density is measured along

different sense to what we have seen before. In this region the wall, we have, instead,

is not possible to obtain an active state either on the surface o o

or in the bulk, by small changes in the bulk and/or surface N1a(X,t,A) = |A|Prseed Ploengyyy(X/ €, ,t/E)),  (26)

branching rates. Hence this “transition” is actually entirely

controlled by theA+A—J process with the branching as we pick up afacto|rA|ﬁ1densrather thar A |Pdensfrom the

playing essentially no role. Thus we have marked this “tran-probability that &,t) at the wall belongs to the cluster.

sition” as Sp* in Fig. a). This simpler and analytically The above correlation functions need only be modified

tractable case was already extensively analyzed in[R8f.  slightly to be valid at the special transition.Af; (the devia-

We will postpone further theoretical discussion until Sec.tion of the surface from criticalilyis a relevant parameter,

IV D4, then we must take care to include the extra variable
Sp. Next we consider the special transition at, A¢/|A|?tin the scaling function. The scaling form replacing

= 0 m.critical» Ms= 0. This transition borders the bulk active Eq. (25) then becomes

phase, and hence will belong to a quite different universality <

class to that described immediately above, and will instead nl(x,t,A)z|A|Bl,‘leeafﬁdenﬁl[x/gL M ELASIA]],

be similar to the special transitions discussed in earlier sec- (27
tions [although fluctuations will now be very important for ) ] ) ]
this (1+1)-dimensional cade where ¢, is a crossover exponent associated with the multi-

O*: For ug>0 and oy<om eriiears the presence of the critical special transition. Similarly, Eq26) is replaced by
A—J reaction on the surface gives rise to an ordinary
“transition.” However, as explained above, the branching n11(X.t,A)=|A|Blvsee"+ﬁ1vd9”glﬂ></é g Al A]].
process again plays essentially no role here. Further details (2
of this O* “transition” are provided in Sec. IV D 4.

O: Finally, at o= 0 critical» s> 0, We expect an ordi-
nary transition similar in character to the ordinary transitions
discussed in previous sectiofalthough in this (1+1)-
dimensional case the fluctuations are again very impdrtant

Note, however, that there are subtleties concerning the spe-
cial transition in 11 dimensions which will be discussed in
SSec. IVD 1.

At the ordinary transition, for example, we can use the
above scaling forms to derive some further exponent equali-
_ ties. The average size of finite clusters

C. Scaling theory

In this section we construct a scaling theory for the sur- (sl>~|A|‘7?, (29
vival probabilities and correlation functions at the Sp and O
transitions. This scaling theory is certainly valid for the meanfollows from integrating the cluster densitg5) over space
field regime but there are, however, subtleties involved in itsnd time, where the surfadsusceptibility exponenty? is
application to the fluctuation dominated regime fix2.  related to the previously defined exponents via
The extent of its validity in that region will be discussed in o o
detail in Sec. IV D. When writing down this scaling theory V| +dvy =B seed" Benst 71 - (30
we must also bear in mind the important distinction between
the B gens@Nd B1 seeg€XpoOnents. We begin by giving a scal-
ing form for the survival probability,(t,A), whereA is the
deviation from bulk BARW criticality. For example, at the
ordinary transition, for a seed placed on the walkatO and
t=0, we have

Analogously by integrating the cluster wall densit¥6)
over the @—1)-dimensional wall and time, we obtain the
average size of finite clusters on the wall,

(s1.0~|A| 7714 (31)

o where
Pi(t,A)=|A|Prseetd (t/)). (24)

. . o +(d=1)v, = B2 edt B uenct v21. 32
It is then straightforward to compute the average lifetime of o JV. = Biseed” Bigens’ Y1 (32

HE - Oo__ O ; H . . .
finite clusters(t)~|A[ ™™, wherery = v|— BT eeq JUSt @S N Note that if they susceptibility exponents obtained from

the case of DP. Egs.(30) and(32) are negative, then they should be replaced
Next, we consider the coarse-grained particle densjty py zero in Eqs(29) and (31).

at the point ,t) for a cluster grown from a seed located
next to the wall atk=0 andt=0. At the ordinary transition D. Field theory

we have )
In order to properly understand the effects of fluctuations,

ny(x,t,A)= |A|B?seed+ﬁdengl(x/§i E). (25)  and to justify some of the scaling forms proposed in the last

section, we now turn to the development of a field theory for
As was the case for DP, th& prefactor in Eq.25) comes surface BARW. We will begin by reviewing the field theory
from Eq. (24) for the probability that an infinite cluster can for BARW in the bulk, before moving on to derive the ap-
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propriate surface actions. The bulk BARW action, written in =2—m(m-+1)e/2+ O(e?), where e=2—d. Hence we see
terms of the response fielgi(x,t) and the “density” field that thelowestbranching process is actually the most rel-
P(x,t), is given by[6] evant. Therefore, close to two dimensions, where the branch-
ing remains relevant, we expect to find active state even
7oA 2 for very small values of the branchiriop agreement with the
jo difp(x, D[ —DV7Th(x,1) mean field phase diagraniurthermore, the fact that there is
only one eigenvalue to compute perturbativedg the renor-
—N1—d(x,0)2](x,1)? malization of the annihilation rate can be performed to all
. . orders[36]), means that there is only one independent expo-
+ o[ 1= (X0 (X, 1) p(x,1)] nent. Hence, close to two dimensions, the order parameter
exponent can be shown to Iige,=dv, .
_ (33 However, inspection of the above RG eigenvabul,em

shows that it eventually becomes negatiifethe one loop
result is to be believed In that case we expect a major
change in the behavior of the system, since the branching
process will no longer be relevant at the annihilation fixed
point. The critical transition point is then shifted with the
active state only being present for values of the branching
greater than some positive critical valies indicated in Fig.
%(b)]. Consequently, we see that there is a second critical
dimensiond.~4/3 whose presence immediately rules out
any possibility of accessing the nontrivial behavior expected
in d=1 via perturbative epsilon expansions down fram
=2. Instead cruder techniqué&such as the loop expansion in

ST, i 7] = J d’x

— (X, 7) = Noth(X,0)

Here the terms on the first line of E@3) represent diffusion
of the particles(with continuum diffusion constari®). The
second line describes the annihilation reacti@ith con-
tinuum rate\), while the terms on the third line represent the
branching procesgéwith continuum rateo,,). The final two
terms represent, respectively, a contribution due to the pr
jection state(see Ref.[35]), and the initial condition(an
uncorrelated Poisson distribution with meag). In the fol-
lowing we will restrict ourselves to the case@fen msince
it is known that the odan case belongs to the DP universal-

ity class(6]. fixed dimensioh must be employe@6]. We now turn to the

The action given in Eq33) is abare action. In order to oo . .
X . derivation of the surface actions appropriate for the cases
properly include fluctuation effects, one must be careful to

include processes generated by a combination of branchir/és_O andus#0.

and annihilation. In other words, in addition to the process

A—(m+1)A, the reactionsA—(m—1)A,...,A—3A need

to be included. These considerations lead to the full action  Starting from an appropriate master equation for the sys-
tem on a lattice, the form of the surface action can be derived

- LI N using standard techniqug35,36|. After mapping to the con-
Sourd ¥ 4 T]:f ddx{ fo dt( YO OLA =DV Jg(x1) tinUL?m theory, we finqd %ﬁi b%re actichPErE: ggg{§+ share,
with Sy, given by Eq.(33), and

1. ps=0 field theory

m/2
+ 2 oa[ 1= P T D (X, ) . .
- sere [ b [ atton1- 300000, @9
0 S

—x[l—«z(x.wz]w(x,t)z) o
where is= (X, X, =0t) and ¥s= (x,x, =0;t). Note that

the terms representing the annihilation reactii A— O

. (34) areirrelevant on the surface close to the upper critical di-

mension.. The classical field equations for the above action

can be derived by taking the variational derivatives of the

action SPare= gPare; ghareyith respect to the fieldg and .

These equations are solved By= /=1, with ¢ satisfying

— (X, ) = Noth(X,0)

Notice also that(for even m the action(34) is invariant
under the “parity” transformation

PO, — = P(X,1), P(X, 1) — — (X, 1). (35

This symmetry corresponds physically to particle conserva-

tion modulo 2. The presence of this extra symmetry NOW, here A= —mo and with the boundary condition
. . m:
takes the system away from the DP universality class, angmﬁ ¢|XL:0:AS¢S’ whereA = — Mo, These mean field

into a new class: that of branching-annihilating random . . .
results are in agreement with our analysis in Sec. IV A. Fur-

walks with an even number of offspring. h h bound ¢ the
Close to the upper critical dimensiol=2, the renormal- N€More, we note that a boundary term of the form

ization of the above action is quite straightforwaigre we  ¥sdx, #lx, =0, @lthough marginal from power counting argu-
quote the results from Reff6]). Only the branching and an- ments, is actually always redundagven in the regime
nihilation rates need be renormalized, and in particular therevhere mean field theory no longer app)ie$his is also the

are no diffusion constant or field renormalizations. Further<ase for the surface action in OBee Ref[13]).

more, if we are close to the annihilation fixed point, then the However, if we are properly to include fluctuation effects,
RG eigenvalue of the branching parameter bec0|y|(en§ we must again take care to include surface terms generated

up=DV2y— A= 2\ ¢, (37
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by a combination of branching and annihilati¢as in the of the surface branching parameter in a fermionic lattice

bulk). This leads to the full surface action model in 1+ 1 dimensiongsee Sec. VI for further detajls
[z " 2. us#0 field theory
_ | qa-1 _ 52177
Sl_f a7 fo dt ;1 oa 1= 95 1sibs|. (39) In this case the reactioA— & is now possible, but only
at sites on the wall. In the bosonic field theory language
: b

Note also that the parity symmet(85) is preserved for the emgﬁyed above, we have the bare actiShf"=Se
ws=0 model at the wall, as well as in the bulk. + 8%, where

Power counting on the above action reveals that the sur-

face branching rates_ all _have naive dimensiofioy ] Sgare:f dd‘lef dt(Ums[l—lAﬂ?]lAﬂslﬂsﬁL ud Ps—114).
~ k!, where k denotes an inverse length scale. However, 0

below two dimensions this scaling dimension will be renor- (39)

malized dovx_/nwardsthis can be seen physically asa result OfSymmetry(35) is now broken by the surface term propor-
processes likeA—3A— A rendering the branching process tional to sz, which describes th&— & reaction. Repeating

less efficient As a result of this renormalization, we expect our derivation of the classicainean field equation for they
the lowest generated procdse., withl=1 in Eq.(38)] will density field, we find

become thanostrelevant(as it was in the bulk Neverthe-

less, despite this downward renormalization, close enough to =DV 2h—Ay— 2\ )2, (40)
two dimensions, the scaling dimension of the most relevant _ N
coupling o will remain positive, and thus under the RG where A=—may,, and with the boundary condition
will flow to o for all nonzero starting values. This state of D‘?XL‘/’|XL:0:_AS¢S’ where 432 Mot s T'h|s IS 1N
affairs corresponds to the extraordinary transition where th@greement with the mean field analysis given in Sec. IV A.
surface isactivewhile the bulk is critical. On the other hand, Note that a boundary term of the fon}n;axL ¢|Xi:0 is again

at bulk criticality and withozs=0, we have a multicritical always redundant.

special transition point. In this case, after writing down and  Action (39) is a bare action whose terms simply represent
solving the appropriate RG equatiofexactly along the lines the reactionsA—(m+1)A and A—C at the surface.

of Refs.[6,13]), one can derive the scaling results for the Clearly, however, from these two reactions we can generate
density quoted in Sec. IV C, where we can see that the indehe hierarchy of processes—mAA—(m—1)A, ... ,A
pendent renormalization af,_contributes to the crossover —2A. Hence we must replace the above bare surface action
exponente,. Furthermore, since there is no field renormal-Wwith

ization (either at the surface or in the byjkhis implies that

the exponentB3f.sis just the same as in the bulk, i.e., Szzf N J'Tdt
,Bf‘%eng Bdens: HOWever, we must again stress that this result 1o

m

2 Uls[l_‘}ls]’ls‘ﬂs"—#s[‘zs_ 1]es|-

=1

is only true close ta=2. (42
The situation ind=1 is rather different, partly due to the o ) )
shift of the bulk critical point away frono,,=0. This means The renormalization of the actiof#1) is now somewhat

that thed=1 transition ato,= o'y, criical CANNOtbe based on different from theu=0 case. We again expect that we need
perturbative epsilon expansion calculations down from twanly keep the lowest generated branching term on the sur-
dimensions. However, we can say a little more if we firstface, namely, that with=1 in Eq. (41). As before, we ex-
consider the regime ;< o, eriices in =1, where the bulk is pgct fluctue}uons to onver the scaling dimension qf this cou-
controlled solely by the\+A—J reaction. In that case we Pling from its mean field valudalthough actually ind=2
expect the scaling dimension of all the, to be negative in this suppression will only be I-oga.rlthnjlc(-)n the other hand,
d=1, following the downward trend insthe renormalization the efficacy of the—(JJ reaction is certainlyiotreduced by

mentioned above. In that case surface branching is ithen fluctuations. Hence we expect thi— s~ oy will always
relevantin d=1, leading to the Sp* special “transition.” "Un to the fixed point ate, corresponding to the _ordlngry
Similarly, at the Sp transition atr,=om criicar» We Might tr'ansmon. In that case the surfaﬁfdensexponent is again
again expeciry_ to be irrelevant. This will be reflected in Simply related to the bulk resuit due to the absence of any
the scaling functions for the density, wheenusually the surface field renormahzatlon. This exponent can be com-
crossover term\¢/|A|?1 will now be absent. However, the puted from the s_cah_ng O_f the sur_face operalgy ix, |, —o.
surface exponents here will presumably be unrelated to th&here thex, derivative simply brings out an extra factor of
bulk exponents, since the absence of field renormalization. from the scaling function, givingss gene= Baenst v1 - Us-
mentioned above is not expected to hold all the way down tang the resultBge,e=dv, from Ref.[6], we see thaﬁfdenS
d=1. =(d+1)r, . Again we stress that this result is only true

Hence, if the above scenario is correct, we do not expeatlose to two dimensions. The more interesting transition at
to see an extraordinary transitiondr= 1 for any finite value o= o, critical IN d=1 IS Not perturbatively accessible in ep-
of the surface branching, since the surface branching wilkilon expansions down from=2. Nevertheless, we still ex-
always be irrelevant. We have confirmed this analysis nupect the same general picture to hold with the surface
merically: our simulations have found no evidence of an achranching always being irrelevant, leading to the G.(
tive surface state fow,< o, critical €v€N fOr very high values <o, critica) OF O (0= O critica) transitions.
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3. Discussion now decays a$ ! [37,38. Therefore, these two character-

From the above analysis we can understand the structufg2lions of the Sp* state doot scale in the same way close

of the phase diagram close to two dimensions. kg# 0 to the wall.

. . . A
this is similar to the mean field picture, with a special tran- Since the bulk gt thel =1 O. transmon is controlled
" . ST . . solely by the reactiolh+A—J, its properties can also be
sition point ato,,= o,, =0, and with the extraordinary tran- . o
s inferred. The relevant surface operator is again just

sition for oy=0,0y>0. On the other hand, fqus>0, the 5 y|, _,. Therefore, since distance still scales a$~t*?2

picture is very different from mean field theory, with renor- we can obtain the required surface scaling from simple di-

malization effects ensuring that only the ordinary transitionmensional analysis. Since the bulk=1 density decays as

is accessible. However, actually th=2 this might be hard t~2 we see that the surface density must decay as

to observe, since in that case the surface branching is only However, we must emphasize again at this point that the

marginally less relevant. methods and results mentioned here are only applicable
One would now like to use action86) and (39) as the  where both the surface and bulk branching processesrare

starting point for a field-theoretic investigation of tlhe,  important Unfortunately, therefore, the more interesting Sp

= 0 critical transitions ind = 1, where one would like to iden- and O transitions in 1 dimensions remain out of reach.

tify two independent, nontriviaurfaceB; exponentga fea- Hence, given the fundamental difficulties associated with

ture which is certainly indicated by our simulations; see Secthe field theory, it seems fruitful to search for alternative

VI). Surprisingly, our numerical results also indicate that@PProaches to the problem which might shed some further

these surfaced, exponents “swap” if theu =0 and s light on the interesting propertl.es _of the_surfa,eg expo-

£0 cases are interchangéie., IB(l),dens: ﬁi@eed and ,3?,5eed nents ind=1. One such alternative is provided by the theory

=,8ff,’jen;. These interesting results certainly merit furtherOf quantum spin Hamiltonians, to which we turn in Sec.
analysis. Unfortunately the use of field-theoretic techniques

here will be plagued by precisely the same problems as af-

flicted the bulk calculation, namely, the appearance of a sec- E. Exact results

ond critical dimensiord, . Hence one would be forced into |, this section we will derive some exact results for the

using uncontrolled techniqguesuch as the truncated loop surface; exponents in +1 dimensions at the O and Sp

expansion in fixed dimensigrwhose values for the bulk transitions. The methods are a straightforward extension of

exponents are known to be in rather poor agreement witthe work in Refs[28,39. The starting point is the following

numerics [6]. Furthermore, field and diffusion constant set of rules for BARW withm=2 in 1+ 1 dimensions:

renormalizations, which will be of considerable importance

in d=1, are not adequately taken into account in the trun- GA—~AD withrateD/2,

cated loop theory. In fact these renormalizations only appear

at two loop order. Unfortunately the authors of & were

unable to show that a meaningful truncated loop theory ex-

ists at all at the level of two loops. In addition, further tech-

nical difficulties exist ford<d. involving dangerous irrel- TGATG—AAA and FAASAAD with rate a/2.

evant variables, which have so far prevented a derivation of

scaling relationst criticality even in the bulk. In the light of

these problems we have not attempted to extend the truiNote that these rules are fermionic in chara¢ter more than

cated loop analysis to surface BARW. one particle per site is permittech contrast to the bosonic

rules employed in the derivation of the earlier field theory.

The model described in Eq42) can be transformed into a

spin picture by writing the configuration of a semi-infinite
The (1+1)-dimensional regime which should prove more system as a vectds, ,S;,Ss, . . . ), wheres;=1/2 if theith

amenable to field-theoretic analysis is when both the bulkjte is empty, and;= — 1/2 if that site is occupied. Hence

and surface branching processes are unimportant, and henge: system ket is given by

we should be able to use results derived solely fromAhe

+A— reaction. This is the case for the regian,

<Om,critical IN d=1 [see Fig. $a)]. The Sp* “transition” was _ . .

fully analyzed in Ref[33], which predicted &~ %2 decay IP(®) {% PUsHORsh, “3

both in the bulk and at the wall, with a density excess at the

wall. We note that the critical Sp* state id=1 can be ) ) ) L

characterized in two ways: as a decaying density, or as §"d the equation governing the time evolution is

survival probability. If we place two particles close together

in the bulk att=0, then, from simple random walk theory, aP(1))=—H|P(1)), (44)

the probability these particles are still alive at titrgcales as

t~'2 Hence, in the bulk, these two ways of characterizing

this phase scale in the same way. However, if the two parwhere, using a representation in terms of Pauli matrices, and

ticles are released next to the wall, then it is easy to showlefining n,=(1—0p)/2,vi=1—ny,s =(orxio})/2, we

(using the method of imageshat the survival probability have[28]

AA— IS with rate\, (42

4. Results from A+A—J
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1> Excepting the boundary terms, we see that the Hamiltonian
H== > (D[NVir1+ViNks1— Sy Sks1— Sk Sy 1] has been mapped back onto itself. Furthermore, at the edge,
221 the particles may only hop from site 1 to site 0, but never the
other way round. This means that we can forget about the

a “ . . .
N —s st D+ — 1—o* 0% )N zeroth site in exchange for allowing 'the processes
(M1~ SicSier 1) 5 kzz( Th-101c1) Mk A A,— AT, (with rate a/2), andA,;— T, (with raten/2).
— DHSEP4 \HRSAL o HBARW Hence we see that the new Hamiltoni&rcorresponds to the

case whereu # 0, with the DP processeS—A+A andA
* * * — generated on the boundary.
=D, B\, hRSA+a >, hBARW, (45) If we choose the initial condition to be an uncorrelated
k=1 k=1 k=2 state with density 1/2, denoted ¥/2), then the density at

Here we have used some of the notation of R28], where sitek, pi(t), is given by

symmetric exclusion procedSEP refers to the diffusion p(t) = (| ngexp(— Ht)|1/2). (50)
piece, random-sequential adsorptidRSA) to the annihila- ) ) )
tion piece, and BARW to the branching piece of the “quan-Following exactly the procedure in Retﬁfs.%ﬂ [starting
tum Hamiltonian.” Notice that the boundary has been in-With insertions of the identity operatd?D ~ " into the right-
cluded in(45), since particles may not hop to the left of site hand side of Eq(50)], one can straightforwardly show that
1, and the annihilation/branching processes have also been 1

restricted to sites _1,2,3. .. Hence_, the _above operatét pe(t) = E[l—(0|exp(—7-[t)|k—1,k>], (51
governs the evolution of &l+1)-dimensional BARW sys-

temwithoutanA—(J reaction at the boundary. Averages are,here (0| is the vacuum statdwith no particles, and

calculated using the projection state=2s({s}|, .. |k—1k) is the initial state with only two particles situated at
(Fy=(|FAP(t)). Following Ref.[28], we now define an op- sitesk—1 and k. However, relation(51) is just what we
eratorD where wanted to prove: the left-hand side is the density atktie
site, whereas the right-hand side is 1/2 times the probability
D=y-1vov1v2 - > (48)  that a cluster initiated at=0 by two particles at sitek— 1
andk has not yet died out by time According to our earlier
analysis, forA<0, the left-hand side should scale|agAdens
1 o _ (far from the wal) or |A|3f%ens (close to the waljl and the
Ya-1=5[(1+ D)o = (1-D], right-hand side agA|Psed (far from the wal) or |A|Piseed
(47) (close to the wajl Thus, at the lineED=\+a, we have
1 . . shown the desired resyii.q.q= B7%ens(@nd, of course, the
szzz[(lﬂ)ffﬁﬂﬁu_(l—')]- bulk result Bseed Baend. We note that the bulk result was
proven in Ref.[28], and a very similar result foA+A
—J, was derived in Ref{39] (connecting the O* and Sp*
“transitions”). Using universality, we postulate that the
equality between the two surface exponents is valid every-
% % % where close to the transition line, and not just whBre A
H=[D-N1X hP*™W+[a+N]X hePen 2 hsh ta.
k=1 k=1 k=1 It is now straightforward to derive the relatio,ﬂfgeed
A =Bgdens(again at the lind =\ + ). One simply starts off
+ g[nlno—SISJ +Nvo—Sy'Sp |, (48 with the quantum Hamiltoniait, and then follows the same
steps as abové{ can then be mapped back onto the starting
where we have used the commutation rules described in dédamiltonian, meaning that the transformation is actually a
tail in Ref. [28]. Hence, wherD =\ + a, we have the fol- duality transformation. A relation like that in E¢51) can

with

Defining a new “quantum Hamiltonian” as H
=[D *HD]", we find

lowing processes occurring: then be derived, givings3%eeq= S dens
In summary, at the particular line in parameter spBce
GiAis1-ADi rate(N+a)/2, 1=1,23 ..., =\+a, we have derived some exponent equalities which
are in full agreement with the simulations to be presented in
AA 11— DD raten, 1=123 ..., Sec. VI. In particular, we see that we have mapped BARW at
the special transition onto BARW at the ordinary transition
Bi_1ADi 1A _1AA L rateal2, i=1,23 ..., in 1+ 1 dimensiongand vice versg a rather nontrivial pro-

(49 cedure. This has allowed us to derive some results about the
1 exponentgsomething which seems to be beyond the abil-

i 1AA 1A A rateal2, =123 ..., ity of the field-theoretic methods at presentinfortunately,
as is always the case with exact calculations, the result is
AcA1— oD, raten/2, only derived for one line in parameter space, and we have to

rely on universality in order to claim that it is valid else-
ToA1— Ay, rateN/2. where close to the transition line.
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FIG. 6. Directed percolation in terms of the Domany-Kinzel
model, where time flows vertically downward. Black sites are ac-
tive (A) and white ones inactivelJ. The state of each site at time
t+1 depends on the states of the neighboring sites atttime

V. DPn AND BARW MODELS

We will now briefly present the specific models and
boundary conditions used in our numerical simulations. We
begin with DP, include its generalization to DP2, and then
comment on how we implement BARW. In all cases we FIG. 8. (a) A DP cluster, andb) a DP2 cluster, both grown
include the specific boundary conditions and identify themfrom a single seed in the bulk.
according to the classification in Secs. Illl and IV.

Ford=1, bond DP as well as site Dor which the sites boundary conditio(IBC), and we choose inactivity of type
percolate instead of the bongdsare contained in the 1 to the left of the boundary; see Fig. 10. Apart from impos-
Domany-Kinzel mode[40,41]. Each site can either be active ing the state of these sites within the wall, the sites at the
or inactive and the probability for sifieto be updated to state wall and those in the bulk are updated by the rules in Figs. 7
Sit+1 at timet+1 is given byP(s;+1]Si—14,Si+1¢). See and 9.

Fig. 6 for a typical lattice configuration, and Fig. 7 for the = Next we consider the reflecting boundary condition
update rules. (RBC), where the wall acts like a mirror so that the sites

The DP2 model has two symmetric absorbing states irwithin the wall are always a mirror image of those next to
which the system can be trapped. It is a special case of the wall; see Fig. 11. For DP2, one can see that there is a
generalized Domany-Kinzel moddgDPn) introduced by qualitative difference between the IBC and the RBC. For the
Hinrichsen[12], where each site can be either active or inlatter, regions of type-2 inactivity can become trapped at the
one ofn inactive states. Fon=1 the update rules are iden- wall, and the only way for these regions to disappear is to
tical to those of the Domany-Kinzel model in Fig. 7, but, for wait for the cluster to return, whereas for the IBC such re-
n=2, the distinction between regions of different inactive gions are never trapped.
states is preserved by demanding that they are separated byWe now consider the active boundary conditi®BC),
active ones. An example of a DP2 cluster is shown in Fig.

8(b), and we also show an ordinary DP cluster in Fi¢p)8 Q o o © O o

for comparison. In +1 dimensions, DP2 belongs to the @) @) )

BARW universality class, and the update probabilities are
given in Fig. 9.

The easiest way of introducing a boundary into DP and
DP2 is simply to cut off the lattice. This is equivalent to

introducing boundary sites which are forced to be in one of ® O ® O
the inactive states. We will refer to this case as the inactive p 1-p p 1-p
O O O . ’ . e ® o o e ®
o ‘o ‘o - . .
q (I-g)2  (1-g)2
1 p q

FIG. 9. Update probabilities for DP2: black sites are actifg, (
FIG. 7. Update probabilities for DP in terms of the parameterswhereas white and gray sites are in the inactive steteand |,
0=p,q=<1, where we havg=p(2—p) for bond DP andy=p for respectively. Probabilities for the other configurations follow from
site DP, respectively. Probabilities for the other configurations fol-left-right symmetry and fronP(A| ...)+P(I4|...)+P(l,] ...)
low from left-right symmetry and fronP(A| ...)+P(l|...)=1. =1.
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Vi
Vi

3 e« o ©
(] o e @ (] o e @
FIG. 10. DP2 with an inactive boundary conditiGf8C), cor- FIG. 12. DP2 with an active boundary conditiGhBC), corre-
responding to the speci&bp) universality class. sponding to the extraordinaf§) universality class.

omly to either the left or right of the particlet2]. The

where the sites within the wall are forced to be active; se . . . .
gARW model is expected to be in the same universality

Fig. 12. In this case the cluster will never die completely a ) . )
the wall will always be active and can always induce newclass as DP2, and our results are in agreement with this for
oth bulk and surface quantitiéasing the IBC and RBLC

clusters. Nevertheless, by defining the survival time of 5{3‘ in Sec. Vi il onlv di h Its for DP2
cluster as the point in time when the system has no activity €1c€: In Sec. Vi, we will only discuss the results for ,

apart from within the wall itself, we can define the samesince this is also the model to which we devoted most of our
exponents for the ABC as for the other boundary conditionsSimulations.
However, we have not studied this boundary condition in
any detail but merely mention it here for completeness. VI. NUMERICAL RESULTS

We can now discuss the relation between the above \ye gdied DP2 in detail using Monte Carlo simulations
boundary conditions and our previous classification of the, 14 1 dimensions. The wall is placed &t 0, and we use

universality classes at the boundary for BARW i1 di- 5 jnitial configuration with one active site it 0, with the
mensions. The_key featurg IS Whether_ the symmetry betweegyaq; g being in the inactive statly. Thus the absorbing
]Ehe two absorb|fngh states In tgel bﬁlk IS preszrvled at the Shu.E'tate corresponds to the situation where all sites are in the
ace. In terms of the DP2 model, the IBC mode respects thigyactive state 1. The system is evolved according to the DP2
symmetry and hence belongs to the spetsg un|ver§al|ty rules (see Fig. 9, and we typically average over qnde-
class, whereas the RBC model dpes hot respect this Symmﬁéndent clusters in order to reduce the error bars to a few
try, and hence belongs to the ordind@) universality class. percent. Using the notation of Fig. 9, we have carried out
Furthermore, the ABC model clearly belongs to the extraorg; . iations forq=p at the critical probabilityp, , where we
dinary (E) universality class. Hence we see that by using thehave used the estimape =0.5673[12] e

IBC, F(;EE)C a(;ld ABBACR(\:,I\?fs'f'CiF'on ‘.”lr:_]tlhg. prew_ously dis- In these simulations, starting from a seed on the wall, we
cussed boundary ransitions 1 IMENSIONS €an  measure the survival probabilit,(t), the activity in the

be accessed. ulk N,(t) and at the walN, ;(t), the average spread of the

h Fllgglerrgoég’ Cle_t us notehthta;_;for DT Trr;fﬂcij}35|f|c§tlon 0 cluster(x(t)), and the probabilityp,(s) to have a cluster of
€ an IS somewhat ditterent. Imensions ize(mas$ s, all at criticality[12,23. Furthermore, by aver-

DP probably does not support the special transition, andti . s p
since no symmetry is broken by the RBC, both the IBC an ging over surviving (-3|l-,lSteI’S on(y!e?n_oted by an over I||?e
RBC will belong to the ordinary transition universality class W& measure the surviving bulk activily, (t) and the surviv-
[14,22. ing wall activity N, ;(t), again starting from a seed on the
We have also performed simulations for a lattice BARWwall.
model with IBC and RBC boundary conditions. For BARW  First we performed simulations for DP2 without a wall,
we initially placed two particles at the two sites closest to theand obtained results for the exponents in complete agreement
wall. The one-dimensional BARW model is then imple- with those in Ref[12]. Our results are listed in Tables | and
mented with “dynamic branching,” which means that the Il. There are several estimates available for the bulk expo-
branching of one particle into three particles occurs ranfe€nt Bgens(=Bseed [43]. In the following we will use the
estimateBgyens= 0.922(5)[44].
We now list some exponent relations used to extract the
) o jo} jo} exponents from our numerical simulatioj#s]. All the rela-
A N W tions given below are valid for both the IBGpecia)l and
y S R F R E R TR RBC (ordinary) DP2 transitions, and hence these labels will
—~e 6 o o be suppressed from now on. The probability for a cluster
TN e w o grown from a seed on the wall still to be alive at tirés

given by Eq.(24). At criticality (A=0) it has the behavior

%} O O . O Py(t)~t" 91 seed (52

with the exponent

M

FIG. 11. DP2 with a reflecting boundary conditidRBC), cor-
responding to the ordinarO) universality class. 01 seed B1seed V| - (53
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TABLE I. Critical exponents obtained from our DP2 simulations. For comparison we also list the expo-
nents for DP in the bulk and with an IBC w#ll5,18,47. The §; s.cseXponent is obtained from Eg&6) and
(57). Exponents without the “1” subscript refer to the bulk.

DP DP(IBC) DP2 DP2(IBC) DP2 (RBC)

o 0.473 143) 0.473 143) 0.2885) 0.2872) 0.2852)
Sdens 0.159 473) 0.159 473) 0.2875) 0.2882) 0.291(4)
Baens 0.276 494) 0.276 494) 0.9245) 0.931) 0.942)
K 0.313 684) 0.0002)

K1 0.04963) -0.3542) -0.1412)
81 seed 0.42353) 0.6412) 0.4263)
B seed 0.73381) 2.062) 1.372)
51 dens 0.42353) 0.4153) 0.6352)
B1.dens 0.73381) 1.342) 2.042)
2x 1.265 232) 1.1505) 1.1503) 1.1533)
Y 0.632 612) 0.5753)

Y| 1.733 833) 3.223)

v, 1.096 842) 1.842)

Hence the probability of growing a cluster which lives ex-ing relation (30), a fact which follows from (s;(t))

actly t time steps behaves @g(t)~t~'"tseed Away from = [idt’ Ny(t’), and the relationy;=v)(1+ ;). By inte-

criticality it is straightforward to obtain the average clustergrating the density on the wallEq. (26)], we obtain the

lifetime of finite clusters from Eq(24). One obtains average number of active sites at criticality on the wall
(ty~[A]7™, (54) Ny o(t) ~t*11, (58)

with the exponent with

1=V~ B seed (59

The average number of active sites at criticality, averaged
over all clusters, is obtained by integrating the den&®§) ~ and Whered; gens= B1 gend ¥ - Note also that Eq59) corre-

K11= (d— 1)X_ 5l,dens_ 51,seed (59

over space, and one arrives at sponds to the hyperscaling relati¢d2) at criticality, since
(s1.4(t))=Jodt' Nyg(t"), and y3 1= vy (1+ k1.).
N (t)~t", (56) Alternatively, by averaging only over clusters which sur-

with vive to infinity (denoted by an over-linewe obtain

K1 =0dX — Sgens— 01 seed (57 Ny (1)~ (60)

where we have introduced the cluster envelope or “roughwhere
ness” exponenty=wv, /v (=1/z), and the notationdgens
= Buend v| - Note that Eq(57) corresponds to the hyperscal- k1=dx— Sgens (61

TABLE Il. Critical exponents for the cluster lifetimEg. (52)] and mass distributiondEgs. (68), (69),
(72), and (73)]. For comparison we also list the exponents for DP in the bulk and with an IBC wall
[15,18,47. We also give the exponents for the average lifet[iiig. (54)], and average cluster sizf&gs.
(29) and(31)], obtained from the scaling relations.

DP DP(IBC) DP2 DP2(IBC) DP2 (RBC)
Seed 0.159 473) 0.2905)
51 seed 0.42353) 0.6463) 0.4253)
u 1.108 2%2) 1.2255)
“ 1.28752) 1.5003) 1.3363)
pi1 1.189 726) 1.73372) 1.4085) 2.055) 2.155)
T 1.457 347) 2.303)
m 1.00023) 1.164) 1.854)
y 2.277 694) 3.225)
v 1.82074) 2.08(4) 2.774)

Y11 1.180 8%4) 0.26643) 1.383) (<0) (<0)
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The activity on the wall for surviving clusters reads Note also that many of the scaling expressions given above
only apply exactly at bulk criticality. Away from that point
Ny o(t)~t* 1, (62 one must also include a scaling function. For example, Eq.
_ (52) is replaced byP,(t,A)=|A|Prseed (t/|A|~"I), and Eq.
with the exponent (68) is replaced byp;(s,A)=|A[#1/7 G(s/|A|~ ).
- In Tables | and Il we list our estimates for the critical
k1,1=(d=1)x = 61 dens (63 exponents for DP2. Our results are in complete accordance
with our theoretical analysis: bulk exponents are unaltered
whereas the wall introduces two separate surface exponents.
We have also carried out bulk and surface simulations for
<x2>~t2X, (64) _A<O, and Confirm_ed that our data can _be colle}psed ac<_:ord-
ing to an appropriate survival probability scaling function
wherex is the distance from the seed and the average is takdi$ee Eq.(24) for the surface cageusing our exponent esti-
over all active points at a given time. mates. This numerically confirms the validity of the relation
For further confirmation of our numerical data we also 9= B/v) for the bulk, as well as the analogous relations for
considered the cluster size distributions at criticality. In theboth sets of surface exponents].

Simulations in 1 dimensions thus directly yield; gens
The average position of activity follows from E5),

bulk the typical cluster sizs of finite clusters scales as vol- By using the explicit definitions of the IBC and RBC, we
ume times density, i.e., can deduce some further properties of Bigeeqand B gens
exponents. There will be more activity next to the wall for
s~§ﬂ§”n(A)~|A|‘1"T, (65  the IBC than for the RBC, since the latter can have regions
of |, located at the wall. Once created, théseegions will
with survive until the activity returns to the wall. Thus it follows

that 81 5ens Braens ON the other hand, the existence of these
I, regions implies that the survival probabilit24) for the

From the lifetime survival distribution(52), it is then ~RBC will be greater than for the IBC, leading (Brcces
straightforward to obtain the probabilitp;(s) to have a =Biseed NOte that both our simulations and our previous
cluster of size larger thag for clusters started from a seed €xact calculations show tha; seed B1,densiS the same for
on the wall. Using the fact that the lifetime is set by the both the RBC and IBC. Using a hyperscaling relatjtike

lo=dv, + v|— Bgens (66)

parallel correlation lengtht~¢~|A| =", we see that the thatin Eq.(32)], this implies thaty’r = yF5° (although both
typical cluster size and lifetime are connected by exponents defined in this way are negatiw/e have also
studied several other boundary conditions, and found that
s~tie, (67)  these give the same scaling behavior as either the RBC or

) B IBC depending on whether the above-mentiomgdegions
Hence we obtairP,(s)~P;(t~s"I%) ~s F1seed. Thus we  can disappear only at the wall or also in the bulk.
eventually obtain the probab|lltp11(s) to have a cluster of We can obtain an interesting exponent relation for the
exactly sizes,py(s)=—dPy(s)/ds, with the result RBC transition by assuming that the survival probability is
dominated by the return to the wall of the cluster-envelope,

pa(s)~s 1, 68 \hich leads tq15]
where
S 1= X, (74)
-1 'Blvs_eed (69 in agreement with our simulation results for the RBC. Quali-

pm1=1+ — .
dv, + v~ Baens tatively, this means that thk, regions located at the wall

Similarly, the cluster size distribution on the wall due to ad€términe the scaling, since they can only disappear when

seed located at the wall can also be obtained. In this case tﬁ@e activity ret_urns to the wall. Nq'ge that a relation qf this
typical cluster size of finite clusters is kind clearly fails for the IBC transition. Furthermore, if the

cluster lifetime is defined to be the return time of the cluster-
Swallwgfilg\\nl(A)~|A|71/alv (70) env_ek_)pe(i.e._, the return time of the rightmos_t acti_ve si_te
the initial point, then we expect clusters defined in this way
where to have a lifetime distribution expone@y ceeqgiven by Eq.
(74). This prediction is in agreement with the simulations in
Vo=(d=1)v, +v|— B, dens (71 Ref.[9], where various models in the DP and BARW classes
were studied with cluster lifetimes defined in the way de-
The resulting distribution reads scribed above.
_ For DP it has been customary for some time to investigate
P1,1(Swa) ~ Sy (72 whether the critical exponents can be fitted by simple ratio-
. nal numberg47]. Such a fitting has also been tried for bulk
with BARW with the following guesses int1 dimensionsx
=x—26=0 and y=4/7 [5]. These estimates lead immedi-
pwi=1+ B1seed _ (73) ately to 6=2/7 (and /v, =1/2,y=wvy). It is intriguing to
’ (d=1)v, +v— B1dens note that our numerical results for DP2 also suggest that
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1 =3/2 for the IBC and 4/3 for the RBC. From E(9), it  field theory, which mean that the bounddand bulk tran-
then follows thatd; seeq= 9/14 for the IBC and 3/7 for the sitions occurring ato,= o, criticar Ffemain difficult to treat
RBC. We would need one more relation in order to obtainusing RG methods. Furthermore, we have concentrated on
the last independent exponent, which we can take tejbe the ordinary and special transitions {a+1)-dimensional

In fact, we observe numerically that the relationvj2 BARW—there will most likely also be interesting behavior

— B1seed B1dens=3 is valid to within 1%. From these ob- for the extraordinary transition.

servations the remaining DP2 exponents folloyyens Finally, our most important result is the existence of two
= Bseed™ 12/13, »=42/13, and v, =24/13. Furthermore, jndependent surface exponenss:gensand By seedfor surface
B1seed 27/13 andB; gens= 18/13 for the IBC, and vice versa gaRw (and DP2. This certainly distinguishes DP from
for the RBC. However, at present we have no understanding Arw . since, for the former CasB sce B1dens FOI the

of these possible exact values for e+ 1)-dimensional ex- (14 1)-dimensional BARW case, on the other hand, we have
ponents. BARW is certainly not conformally invariant, and yseq exact techniques to link the surface exponents at the
consequently until some theoretical framework is proposeq)rdinary and special transitions, givingY...q 85 and

to explain why these exponents could be rational numbersﬁfgeed: ﬂ(f,dens It would certainly be instructive to rederive

numerical coincidence remains a distinct possibility. these results from a field-theoretic perspective, but this is
beyond the scope of the present paper.

VIl. CONCLUSION

In this paper we have presented a study of critical surface
effects in systems with nonequilibrium phase transitions. In
particular we have focused on the DP and BARW universal- We would like to thank Tim Newman, Beate Schmitt-
ity classes, where we have put forward a unified presentatiomann, and Uwe Taber for very useful discussions. M.H.
involving mean field, scaling, field-theoretic, and exactacknowledges support from the U.S. National Science Foun-
methods. Furthermore, many of our theoretical conclusiongation through the Division of Materials Research, and is
have been backed up by large-scale Monte-Carlo simulagrateful for hospitality and financial support from the CATS
tions. group at the Niels Bohr Institute, where part of this work was

Nevertheless, there are still a number of open questiongerformed. P.F. acknowledges support from the Swedish
In particular, our understanding of surface BARW i1  Natural Science Research Council. K.B.L. acknowledges
dimensions is hampered by the fundamental problems of theupport from the Carlsberg Foundation.
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